
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2016

Cross-language program analysis for dynamic web
applications
Hung Viet Nguyen
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Engineering Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Nguyen, Hung Viet, "Cross-language program analysis for dynamic web applications" (2016). Graduate Theses and Dissertations.
15061.
https://lib.dr.iastate.edu/etd/15061

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F15061&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F15061&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F15061&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F15061&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F15061&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F15061&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=lib.dr.iastate.edu%2Fetd%2F15061&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/15061?utm_source=lib.dr.iastate.edu%2Fetd%2F15061&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Cross-language program analysis for dynamic web applications

by

Hung Viet Nguyen

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Engineering

Program of Study Committee:
Suraj C. Kothari, Major Professor

Morris Chang
Manimaran Govindarasu

Daji Qiao
Samik Basu

Iowa State University

Ames, Iowa

2016

Copyright © Hung Viet Nguyen, 2016. All rights reserved.

www.manaraa.com

ii

TABLE OF CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES . viii

ACKNOWLEDGMENTS . xi

ABSTRACT . xiii

CHAPTER 1. OVERVIEW . 1

1.1 Software Development Support for Web Applications 1

1.2 Challenges in Analyzing Dynamic Web Applications 2

1.3 Key Ideas of Our Approach . 7

1.4 Contributions and Outline of This Thesis 9

CHAPTER 2. REVIEW OF LITERATURE 14

2.1 Web Application Analysis . 14

2.1.1 Analyzing the Output of a Web Application 14

2.1.2 Web Application Security . 15

2.1.3 Bug Detection for Web Applications 15

2.1.4 Fault Localization for Web Applications 16

2.1.5 IDE Services for Web Application Development 16

2.1.6 Call Graph in Web Applications 17

2.1.7 Web Application Slicing . 17

2.1.8 Web Application Testing . 18

www.manaraa.com

iii

2.2 Related Techniques . 19

2.2.1 Web Engineering . 19

2.2.2 String Analysis . 19

2.2.3 Symbolic Execution . 20

2.2.4 Variability-Aware Parsing and Analysis 21

CHAPTER 3. OUTPUT-ORIENTED SYMBOLIC EXECUTION . . . 22

3.1 D-Model: Representation of Outputs . 22

3.2 Symbolic Execution to Approximate Outputs 24

3.2.1 Key Ideas . 24

3.2.2 Evaluation Rules . 26

CHAPTER 4. PARSING CONDITIONAL SYMBOLIC OUTPUT . . . 33

4.1 VarDOM: Representation for Conditional DOM 33

4.2 Variability-Aware Parsing to Construct VarDOM 34

CHAPTER 5. FOUNDATION FOR CROSS-LANGUAGE PROGRAM

ANALYSIS TECHNIQUES . 39

5.1 Building Call Graphs for Embedded Client Code 39

5.1.1 Supporting HTML Jumps . 40

5.1.2 Supporting CSS Jumps . 41

5.1.3 Conditional JS Call Graph . 42

5.2 Cross-language Program Slicing . 45

5.2.1 Concepts . 45

5.2.2 Approach Overview . 47

5.2.3 Data-Flow Analysis via Symbolic Execution 50

5.2.4 Embedded Code Analysis . 57

5.2.5 Cross-language Data Flows . 58

www.manaraa.com

iv

5.3 Output-Oriented Testing . 60

5.3.1 Motivation . 60

5.3.2 Output Coverage Metrics . 62

5.3.3 Computing Output Coverage . 67

CHAPTER 6. DEVELOPING DYNAMIC WEB DEVELOPMENT

SUPPORT AND IDE SERVICES . 73

6.1 IDE Services for Embedded Client Code 73

6.1.1 The VarDOM View . 74

6.1.2 Syntax Highlighting . 75

6.1.3 Code Completion . 75

6.1.4 Jump to Declaration . 76

6.1.5 Refactoring . 77

6.2 Fault Localization via Cross-language Program Slicing 81

6.3 Bug Detection . 83

6.3.1 Dangling Reference Detection . 83

6.3.2 HTML Validation Error Detection 85

6.4 Output Coverage Visualization for Output-Oriented Testing 87

CHAPTER 7. EMPIRICAL EVALUATION 92

7.1 Evaluation of Call Graphs for Embedded Client Code 92

7.1.1 Experiment Setup . 93

7.1.2 Practicality and Accuracy of Call Graphs 94

7.1.3 Complexity of Call Graphs . 96

7.2 Empirical Study on Cross-language Program Slicing 99

7.2.1 Experiment Setup . 99

7.2.2 Complexity of Data-Flow Graphs 101

7.2.3 Complexity of Program Slices . 102

7.2.4 Discussion . 103

www.manaraa.com

v

7.3 Evaluation of Dangling Reference Detection 104

7.3.1 Experiment Setup . 104

7.3.2 Accuracy of Dangling Reference Detection 105

7.3.3 Case Studies . 106

7.4 Evaluation of HTML Validation Error Detection 108

7.4.1 Experiment Setup . 108

7.4.2 Accuracy of Client Code and Server Code Mapping 108

7.4.3 Accuracy of Fix Propagation from Client Code to Server Code . . 111

7.5 Empirical Study on Output-Oriented Testing 112

7.5.1 Experiment Setup . 113

7.5.2 Results with Random Test Suites 115

7.5.3 Results with Optimized Test Suites 118

7.5.4 Discussion . 120

CHAPTER 8. CONCLUSION . 121

BIBLIOGRAPHY . 124

www.manaraa.com

vi

LIST OF TABLES

Table 5.1 Extension of data-flow relations for dynamic web applications . . 46

Table 5.2 Types of cross-language def-use relations 59

Table 5.3 Output coverage and code coverage for the example in Figure 5.10 66

Table 7.1 Subject systems . 93

Table 7.2 Coverage on subject systems . 93

Table 7.3 Complexity of call graphs . 94

Table 7.4 Running time on subject systems 100

Table 7.5 Complexity of data-flow graph (nodes) 101

Table 7.6 Complexity of data-flow graph (edges) 102

Table 7.7 Complexity of program slices . 102

Table 7.8 Subject systems and reported dangling references 104

Table 7.9 DRC’s detection accuracy . 105

Table 7.10 Subject systems and D-Models 108

Table 7.11 Mapping and fixing result on SchoolMate-1.5.4 110

Table 7.12 Mapping and fixing result on all subject systems 111

Table 7.13 Subject systems . 113

Table 7.14 Pearson correlations among output coverage, code coverage, and

output-related bug coverage for random test suites. Correlations

are computed for a set of test suites of the same size. A pair of

values m ± s indicates the mean m and standard deviation s of

correlation values across different sizes of test suites. 116

www.manaraa.com

vii

Table 7.15 Correlations between output coverage and code coverage with

code-related bug coverage for random test suites (similar to Ta-

ble 7.14 but for PHP errors) . 117

Table 7.16 Comparison between test suites optimized for output coverage

(To) and those optimized for code coverage (Tc). Given a type of

coverage, a value in the table equals (W − L), where W is the

number of times that To has larger coverage than Tc and L is the

number of times that To has smaller coverage than Tc. 118

www.manaraa.com

viii

LIST OF FIGURES

Figure 1.1 An example PHP program generating three different outputs de-

pending on some conditions . 3

Figure 1.2 High-level overview of our approach 7

Figure 1.3 Overview of research tasks. Inner layers contain research compo-

nents that those in the outer layers can be built upon. 9

Figure 3.1 An example PHP program with call-graph edges for embedded

client code (string literals and inline client code are highlighted

in blue) . 24

Figure 3.2 D-Model representation for the output of the PHP program in

Figure 3.1 . 25

Figure 3.3 Evaluation rules for output-oriented symbolic execution 27

Figure 3.4 Executing conditional statements 29

Figure 4.1 VarDOM: conditional representation for the client-side code of

the PHP program in Figure 3.1 33

Figure 4.2 An excerpt of the conditional output of the PHP program in Fig-

ure 3.1 represented with conditional-compilation directives (con-

verted from the D-Model in Figure 3.2). Greek letters represent

symbolic values. 35

Figure 4.3 Parsing output with variability to build a VarDOM 36

Figure 5.1 Parsing CSS code with variability 41

www.manaraa.com

ix

Figure 5.2 Reencoding variability for JS code 44

Figure 5.3 Example of a cross-language program slice 47

Figure 5.4 Overview of WebSlice . 48

Figure 5.5 Symbolic execution’s evaluation rules to detect data flows (exten-

sions to PhpSync in Section 3.2 are highlighted in gray) 51

Figure 5.6 Detecting data flows at conditional statements 53

Figure 5.7 Interprocedural flows (RET nodes are highlighted) 54

Figure 5.8 Data-flow relations across different languages 58

Figure 5.9 An example web application and illustration of output coverage . 61

Figure 5.10 An example PHP program, its output universe representation,

and S-Model . 64

Figure 5.11 Computing output coverage . 67

Figure 5.12 Algorithm to create S-Model (added instrumentation is in italics) 69

Figure 6.1 IDE services for embedded client code in dynamic web applications 73

Figure 6.2 The VarDOM view and syntax highlighting support 74

Figure 6.3 Code completion support . 75

Figure 6.4 “Jump to declaration” support 76

Figure 6.5 BabelRef’s entity view . 77

Figure 6.6 BabelRef’s entity renaming: selecting an entity to rename 78

Figure 6.7 BabelRef’s entity renaming: previewing changes 78

Figure 6.8 Cross-language entities/references in SquirrelMail-1.4.22 79

Figure 6.9 Entities with the same name in SchoolMate-1.5.4 80

Figure 6.10 Entities with scattered references in SchoolMate-1.5.4 81

Figure 6.11 The WebSlice Eclipse plug-in . 82

Figure 6.12 DRC’s entity table . 84

Figure 6.13 DRC’s dangling reference detection 85

Figure 6.14 Embedded dangling reference detection in DRC 86

www.manaraa.com

x

Figure 6.15 Dangling reference detected by DRC in SquirrelMail 87

Figure 6.16 Bug-locating and fix-propagating for HTML validation errors to

PHP server-side code . 88

Figure 6.17 Screenshot of WebTest on SchoolMate-1.5.4 91

Figure 7.1 Cumulative distribution of distance of HTML and JS jumps (within

the same file), depicting the percentage of jumps shorter than a

given distance . 96

Figure 7.2 Cross-language data flows in a cross-language program slice . . . 103

Figure 7.3 Newly found PHP dangling references in MRBS at revision 590 . 106

Figure 7.4 PHP dangling reference $cat_arr in ImpressCMS at line 83 . . . 107

Figure 7.5 Comparison of Covstr and statement coverage for the first exper-

iment in SchoolMate. (Note that for the largest test suites, the

correlation is 0 since there is only one largest test suite.) 117

Figure 7.6 Comparison of Covstr and statement coverage for the second ex-

periment in AddressBook . 119

www.manaraa.com

xi

ACKNOWLEDGMENTS

This thesis would not be possible without the guidance and support of many people.

First and foremost, I am deeply grateful to my adviser, Prof. Suraj C. Kothari. I

admire not only his knowledge and wisdom but also his warmth and kindness. He taught

me the importance of selecting what problems to work on because “life is short,” and

made me question whether a method that I was about to use was going to achieve its

goal. Much like the way that he leads a strong research group and company to deal

with the complexity of software, he has guided me to handle life situations with grace,

simplicity, and straightforwardness. He also encouraged me to help others without asking

for anything in return. I feel very fortunate to have met Prof. Kothari in my life.

I am also grateful to Prof. Tien N. Nguyen, who had an important role in my pro-

fessional development and made a large investment in my upbringing as a researcher.

Without him, I would not have had a number of achievements during my Ph.D. study.

Next, I would like to sincerely thank Prof. Christian Kästner from Carnegie Mellon

University, who is an excellent co-mentor for my research. I am often amazed by his

sharp thinking and high productivity, among his many other exceptional traits. He set

high standards for my research, but at the same time, gave me the skill set to succeed

and instilled in me the passion for our work. I found my weekly meetings with him not

only fun, productive, but also highly inspiring. It is truly a privilege and enjoyment for

me to have worked with him.

For many years I have also benefited from the research group that I was a part of.

It was perhaps the most productive and supportive lab environment that I have ever

joined. This thesis is the fruit of working with my kind and talented colleagues.

www.manaraa.com

xii

My gratitude also extends to my committee members. Prof. Chang deserves special

thanks since he was there when I needed help the most and gave me valuable advice

for my future career as well as supporting my job applications. Prof. Govindarasu and

Prof. Qiao not only helped with my Ph.D. program but also gave important guidance

and encouragement. While my interaction with Prof. Basu was limited, I was already

impressed with his openness and graciousness. I wish that I had spent more time with

all the professors to learn more from them.

In addition, I am thankful to the members of the Vietnam Education Foundation

Fellowship who provided financial support for the first two years of my study, to the

chair and staff of the Electrical and Computer Engineering Department, as well as staff

members of the Graduate College and the International Students and Scholars Office,

who have facilitated my study and made my time at Iowa State University memorable.

Thanks to my amazing wife and my wonderful brother for always being by my side,

to many dear friends for having been an essential part of my life outside the lab.

Finally, my deepest thanks and appreciation go to my Mom and Dad. For everything

that you have done for me, there is certainly no way that I can thank you enough.

Overall, although bearing my name, this thesis is truly a collaborative effort of all of

the aforementioned people. I also believe that getting this hard-earned degree is just the

beginning—there is a lot more for me to explore and to contribute. As I continue my

journey, I will remember those who have supported me during my years at Iowa State

University. It has been a tough process, but it has also been a fun ride. Again, I am

grateful to all of the people who made it happen. This thesis is dedicated to them.

www.manaraa.com

xiii

ABSTRACT

Web applications have become one of the most important and prevalent types of

software. In modern web applications, the display of any web page is usually an interplay

of multiple languages and involves code execution at different locations (the server side,

the database side, and the client side). These characteristics make it hard to write and

maintain web applications. Much of the existing research and tool support often deals

with one single language and therefore is still limited in addressing those challenges.

To fill in this gap, this dissertation is aimed at developing an infrastructure for cross-

language program analysis for dynamic web applications to support creating reliable and

robust web applications with higher quality and lower costs. To reach that goal, we

have developed the following research components. First, to understand the client-side

code that is embedded in the server-side code, we develop an output-oriented symbolic

execution engine that approximates all possible outputs of a server-side program. Second,

we use variability-aware parsing, a technique recently developed for parsing conditional

code in software product lines, to parse those outputs into a compact tree representation

(called VarDOM) that represents all possible DOM variants of a web application. Third,

we leverage the VarDOM to extract semantic information from the server-side code.

Specifically, we develop novel concepts, techniques, and tools (1) to build call graphs

for embedded client code in different languages, (2) to compute cross-language program

slices, and (3) to compute a novel test coverage criterion called output coverage that

aids testers in creating effective test suites for detecting output-related bugs. The results

have been demonstrated in a wide range of applications for web programs such as IDE

services, fault localization, bug detection, and testing.

www.manaraa.com

1

CHAPTER 1. OVERVIEW

1.1 Software Development Support for Web Applications

Software has become a critical part of our society over the last few decades. Advances

in computers and technology have impacted virtually every aspect of modern society

including business, commerce, healthcare, transportation, education, science, technol-

ogy, entertainment, and so on. Improving software quality and reducing the cost of

software development have become increasingly vital goals since software failures and

software malfunctioning are highly expensive. According to a study commissioned by

the U.S. Department of Commerce’s National Institute of Standards and Technology

(NIST) in 2002 [110], the economic costs of faulty software in the U.S. are estimated

to be in the range of tens of billions of dollars per year, representing nearly one per-

cent of the nation’s gross domestic product. To improve software quality and reliability,

various methods have been introduced to aid developers in making software, for exam-

ple, by providing automated support in modern integrated development environments

(IDEs) for purposes such as bug detection, debugging, refactoring, code navigation, code

completion, and many other tasks.

Despite their increased popularity in supporting traditional software applications, ex-

isting methods face fundamental barriers when being applied to multilingual, dynamic

web applications, which have become one of the fastest growing and most important

types of software in recent years [100], with the success of languages such as PHP and

JavaScript (JS). As of February 2016, there are more than three billion Internet users and

www.manaraa.com

2

nearly one billion websites (more than 53,000 of which are being hacked every day) [133].

While it is critical to facilitate the development of web applications and reduce the num-

ber of software defects, program analysis and IDE support for dynamic web applications

are still highly limited compared to those for traditional software applications due to a

number of challenges that dynamic web applications pose to web code analysis.

1.2 Challenges in Analyzing Dynamic Web Applications

Web applications follow the client-server model [149], in which the server and the

client communicate over a computer network. The server serves as the service provider

whereas the client serves as the service requestor. When the client sends a request to

the server, the server-side program is executed and generates a response to the client

in the form of client-side code written in HTML, JS, and CSS. At the client, a web

browser executes the received client-side code to display a web page. Unlike static web

applications in which the server-side program generates the same response to the client

across different executions, an important characteristic of dynamic web applications is

that, depending on different conditions in the server-side code, the server-side program

may generate different outputs (i.e., different variants of client-side code). In this work,

we are interested in dynamic web applications since they are the prevalent type of web

applications [14]. Note that since the client-side code is generated from the server-side

programs, analyzing a web application means analyzing server-side programs. As an

example, Figure 1.1a displays a dynamic web application written in PHP, in which the

server-side program generates three different outputs (Figure 1.1b).

Key challenges. The nature of dynamic web applications present two core chal-

lenges for program analysis. First, there exists a mixture of server-side code and client-

side code within server-side programs. The client-side code often appears in server-side

programs as scattered, incomplete string fragments. Many applications such as IDE ser-

www.manaraa.com

3

mysqli_query($conn, "UPDATE Sessions SET active='1'...");
function createInput($name, $value) {
 return '<input name="'.$name.'" value="'.$value.'" />';
}
$content = '';
if ($C1) {
 $content = createInput('foo', '1');
}
else if ($C2) {
 $content = createInput('foo', '2');
}
echo "<form>" . $content . "</form>";
echo "<script>validate(document.forms[0].foo);</script>";

<form><input name="foo" value="1" /></form>
<script>validate(document.forms[0].foo);</script>

<form><input name="foo" value="2" /></form>
<script>validate(document.forms[0].foo);</script>

<form></form>
<script>validate(document.forms[0].foo);</script>

(a) Server-side program in PHP, containing a mixture of
server-side code and client-side code

No error

Error: undefined object document.forms[0].foo

No error

(b) Client-side programs (output of server-side
prorgram), containing only client-side code

<form>
#if $C1
<input name="foo" value="1" />
#else
#if $C2
<input name="foo" value="2" />
#endif
#endif
</form>
<script>validate(document.forms[0].foo);</script>

(c) Output-oriented abstraction of the server-side
program, containing only client-side code with #ifdefs

1
2
3
4
5
6
7
8
9

10
11
12
13

Case 1: $C1 == TRUE

Case 2: $C1 == FALSE && $C2 == TRUE

Case 3: $C1 == FALSE && $C2 == FALSE

Figure 1.1 An example PHP program generating three different outputs depending on
some conditions

vices and bug detection would require an understanding of such fragmented client-side

code while it is still embedded in server-side strings. Second, there could be an expo-

nential number of generated variants of client-side code depending on the conditions in

the server-side program. An analysis would need to first capture these large number of

variations and then perform operations on them.

To illustrate these challenges, we discuss a specific type of analysis in web applications,

namely detection of undefined reference errors. A reference to a program entity (e.g., a

variable or a function call) is undefined at run time if the entity has not been declared

in the current execution. These types of errors can lead to unexpected behavior of the

program at run time, ranging from disruptive web service, blank pages, missing user

information, unwanted error messages, to fatal crashes, input validation bypass, and

www.manaraa.com

4

other security vulnerabilities [104]. In our example in Figure 1.1, in the first two cases

(PHP variable $C1 evaluates to TRUE, or $C1 evaluates to FALSE and $C2 evaluates to

TRUE), an HTML form with an HTML input named foo is generated. However, in the

third case (both $C1 and $C2 evaluate to FALSE), no HTML input named foo is defined in

the form. Therefore, when the JS code attempts to access the HTML input, an undefined

variable error occurs. In this case, since the error occurs at a call to an input validation

function, some malicious inputs could be injected into the web application.

Since undefined references cause the program to behave incorrectly and potentially

present security threats, it is desirable to detect them early. Concretely, for our example,

we aim to statically analyze the server-side program and detect the possible undefined

reference error on line 13 of Figure 1.1a. To do that, the analysis would need to iden-

tify all possible declarations and references of client-side entities (HTML inputs and JS

variables) and then match their conditions to detect a generated output variant in which

a reference does not have a corresponding declaration. For instance, in Figure 1.1a, it

would need to detect that the HTML input named foo is created on line 7 under condi-

tion $C1 and is created on line 10 under condition !$C1 && C2, whereas the JS reference

document.forms[0].foo on line 13 exists in all cases (condition TRUE). By matching the

constraints of the HTML input declarations and the JS reference, the analysis would

then be able to report that the JS reference is undefined under condition !$C1 && !$C2.

Such analysis on the server-side programs is challenging due to the following unique

characteristics of dynamic web applications:

1. Mixture of server-side code and client-side code. In essence, a dynamic

web application is a program that generates another program. In the first stage, the

server-side program is executed and uses server-side data to generate a client-side pro-

gram by assembling string literals (e.g., HTML templates and JS functions) with custom

computations. The client-side program is then executed by the client’s web browser in

the second stage. This dynamic code generation introduces three challenges:

www.manaraa.com

5

• Embedded client code: The server-side code and the client-side code are intermixed

within the same program. Code elements occurring in the generated client-side

program are often embedded in string literals in the server-side program. For ex-

ample, the opening and closing HTML <form> tags appear within the PHP string

fragments on line 12 of Figure 1.1a. However, not all server-side strings contain

client-side code—e.g., the string on line 1 contains an SQL query and is not related

to the output. An analysis would need to understand the semantics of the string

literals to analyze embedded client code.

• Fragmented client code: Often, the client-side code is assembled from various

sources in the server-side source code. In our example, the HTML input foo does

not appear verbatim in the server-side program but is instead created via a PHP

function (lines 7 and 10); it is then concatenated with two PHP strings on line 12

at a different statement. The order in which HTML fragments are defined may

be different than the order in which they appear in the output. For instance, the

HTML input is defined before the HTML form but appears inside the form since

it is printed after the <form> opening tag on line 12. In addition, each fragment

of the embedded client code may not form a valid syntactical unit (e.g., the first

string literal on line 3 contains an incomplete HTML input tag, and the name foo of

the HTML input appears as an isolated string on lines 7 and 10). To recognize that

the PHP string ‘foo’ contains the name of an HTML input, the analysis would need

to detect that the function call createInput invokes the function defined on lines 2–4,

which generates an HTML input with its name being the value of the function’s

first argument. A heuristic parser that scans for string patterns of client-side code

would not work in such cases.

• Cross-language interactions: The source code of a dynamic web application is typi-

cally written in multiple languages for various tasks such as defining the application

www.manaraa.com

6

logic, accessing a database, and displaying content. These languages include server-

side ones such as PHP, JSP, ASP, SQL, and client-side ones such as HTML, JS,

CSS. Data entities can have relations across languages, i.e. the value of a data

entity computed in one language may affect the value of another entity in another

language. In our undefined reference analysis, the declarations and references could

also be cross-language (e.g., a JS variable referring to an HTML input). As another

example, a program failure can occur in a language that is different than that of

the root cause (i.e., the place where the error needs to be fixed). Thus, a technique

to analyze dynamic web applications or to provide IDE services must be able to

handle embedded code in multiple languages.

2. Exponential number of variants of client-side code. The same server-

side program can generate different variants of client-side code depending on different

user inputs, data from databases, and configuration options. A program of n sequential if

statements can generate 2n number of paths, potentially producing 2n unique outputs. In

our example, the HTML input foo is created under conditions $C1 and !$C1 && $C2, but is

not created in condition !$C1 && !$C2, resulting in an error in that case. During analysis,

these conditions need to be taken into consideration to verify whether a property can hold

across all possible variants. A naive brute-force approach that explores an exponential

number of outputs individually would not scale.

For these reasons, it is nontrivial to analyze embedded client code while it is still

embedded in the server-side programs. Existing analysis and contemporary IDEs support

developers in writing and maintaining code either in the server-side code only or in the

generated client-side code only. For example, the basic editor services in IDEs, such

as syntax highlighting, syntax validation, auto-completion, “jump to declarations”, and

many others are standard for most languages, including PHP, but missing for the client-

side code found in string literals of the server-side programs. While research on analyses

of dynamic programming languages has advanced the ability of analysis support for

www.manaraa.com

7

languages such as PHP and JS (e.g., [16, 44, 6]), existing approaches are still limited in

addressing the mixture of server-side code and client-side code and dealing with a large

number of variants of client-side code in dynamic web applications.

1.3 Key Ideas of Our Approach

Server-Side
Program

PHASE 1:
Output-Oriented

Symbolic Execution

Output-Oriented
Abstraction of

Server-Side Program

PHASE 2:
Parsing & Analysis of

Variants of
Client-Side Code

Analysis Results

(Call Graph, Program

Slices, Bugs, etc.)

(Output = Generated Client-Side Code)

Figure 1.2 High-level overview of our approach

To tackle the above challenges, we have designed a two-phase approach to support

web application analysis (see Figure 1.2). The two phases are aimed at addressing the

first and the second challenge, respectively.

Phase 1—Output-oriented symbolic execution. The goal of this phase is

to separate the client-side code from a mixture of server-side code and client-side code

(challenge 1). To do that, we make use of symbolic execution [150] to abstract the server-

side program with regard to its output. Symbolic execution explores different paths in

a program and resolves possible values of a variable at a program point. (In a web

application, the output stream can be considered as a special variable holding a string

value representing the output.) Since we need to analyze the embedded client code of a

web application, we use symbolic execution to resolve the string value of the output at

the end of all possible executions. The result of this phase is an abstraction of the server-

side program for its output, which contains purely client-side code and preserves possible

client code variants controlled by the conditions in the server-side program. We retain

the variants using the conditional compilation mechanism (#ifdefs) commonly used to

specify a family of C programs. To illustrate, in Figure 1.1c, we show this abstraction

www.manaraa.com

8

for our example. Note that we abstract away all parts of the server-side program that

are not relevant to the output (e.g., the SQL query on line 1 of Figure 1.1a).

Phase 2—Parsing and analysis of variants of client-side code. The goal of

this phase is to deal with variants of client-side code (challenge 2). Our key insight is that

these variants resemble C code written with conditional directives (#ifdefs), except that

it is for client-side code written in HTML, JS, and CSS. Our abstraction representation

in phase 1 allows us to capture these variants and enables us to reuse and adapt the

state-of-the-art approaches in the analysis for programs written C code with #ifdefs to

apply for the analysis on client-side code variants written in HTML, JS, and CSS.

To illustrate the working of these two phases, we refer to our undefined reference

analysis. After the first phase, we obtain an abstraction for the output of the server-side

program (see Figure 1.1c). In the second phase, we use specialized parsers to parse the

output abstraction and identify two HTML input declarations foo defined under condi-

tions $C1 and !$C1 && $C2, and JS reference document.forms[0].foo under condition TRUE.

We then check whether the reference is undefined under certain conditions. After match-

ing the constraint of the reference against the combined constraints of all its declarations,

the analysis can detect that the reference is undefined under condition !$C1 && !$C2.

By designing the two phases, we are able to tackle the core challenges in web applica-

tion analysis. Phase 1 transforms a program with mixed server-side code and client-side

code into one that contains only client-side code, and captures its variants via a repre-

sentation resembling C code with #ifdefs. In phase 2, we develop specific techniques to

parse and deal with client code variants. Different types of analysis can be performed

not only for bug detection purposes as in this example but also for other purposes such

as program understanding, programming support, or testing. The key limitations of our

approach involve the inherent unsoundness of symbolic execution in the first phase and

the possible combinatorial explosion of client-side code variants in the second phase. We

discuss these limitations in detail at the end of Chapters 3 and 4.

www.manaraa.com

9

1.4 Contributions and Outline of This Thesis

Output-Oriented
Symbolic
Execution

Conditional DOM
(VarDOM)

Call Graph

IDE Services

Fault Lo
calizatio

n
Bug Detection

Testin
g

1

2

3

4

Layer 4: Web Dev. Support

Layer 3: Basic Analyses

Layer 2: Parsing Output

Layer 1: Computing Output

Figure 1.3 Overview of research tasks. Inner layers contain research components that
those in the outer layers can be built upon.

Based on those key ideas, we propose an infrastructure for cross-language program

analysis for dynamic web applications. As depicted in Figure 1.3, we organize the research

tasks into four layers with components in the inner layers serving as the foundation for

components in the outer layers to be built upon. (The first layer corresponds to the first

phase, whereas the other layers correspond to the second phase.)

Layer 1—Computing the output of server-side code. We propose output-

oriented symbolic execution [105, 102] on PHP code to approximate the output of a

dynamic PHP web application. During symbolic execution, we follow all function calls,

explore all branches, and keep track of the creation and propagation of string literals

www.manaraa.com

10

and variables. We use symbolic values to represent unknown values (e.g., data from a

database or web service, or the current time). The result of symbolic execution is the

generated client-side code which possibly contains symbolic values and conditional values

that are produced under specific path constraints.

Layer 2—Parsing the output of server-side code. Since the client-side code is

conditional, we use variability-aware parsing [78] used in software product lines to parse

the result from the previous step in order to understand the semantics of the client-side

code. We create different variability-aware parsers for conditional HTML, JS, and CSS

code. The parsing result is a VarDOM representation [101] of the embedded client code,

which represents the hierarchical structure of a web page. A VarDOM, the core of our

analysis framework, is similar to the Document Object Model (DOM) for HTML except

that it contains condition nodes to indicate that certain subtrees of the HTML document

may vary depending on some condition.

Layer 3—Providing basic cross-language analyses. Using the VarDOM, we

are able to analyze the embedded client code written in HTML, JS, CSS. (While tradi-

tional analyses for static client code work on a single DOM, our variability-aware analyses

work on a VarDOM with conditional parts.) We develop novel concepts, techniques, and

tools for the following:

• For call graphs in embedded client code [101, 103], we create call-graph edges in

different languages: between opening and corresponding closing HTML tags, be-

tween CSS rules and affected HTML elements, and between JS function calls and

corresponding function declarations.

• For cross-language program slicing [102], we detect data flows within PHP and

embedded languages (SQL, HTML, JS) and connect the data flows among them.

Based on the established data flows, we compute a (possibly cross-language) pro-

gram slice for any given entity.

www.manaraa.com

11

• To support testing web applications, we introduce a novel test coverage criterion

called output coverage and a technique for computing output coverage that mea-

sures how much of the output has been tested by a test suite.

Layer 4—Providing software development support. We use our program

analysis infrastructure to support a wide range of dynamic web development activities.

Our current support includes the following:

• IDE services for embedded client code: We develop Varis [101, 103] and Babel-

Ref [106] to provide editor services on the client-side code of a PHP-based web

application, while it is still embedded within server-side code. We implement var-

ious types of IDE services for embedded client code including syntax highlighting,

code completion, “jump to declaration”, and refactoring.

• Fault localization via cross-language program slicing : We implementWebSlice [102],

a tool to compute cross-language program slices for PHP web applications. The

program slices computed by WebSlice can be used to track data flows from the

location that manifests the failure to the original location of the root cause for

fault localization purposes.

• Bug detection: We develop two different tools for detecting two types of bugs

in PHP web applications: (1) Dangling Reference Checker (DRC) [107, 104]—a

tool that statically detects PHP and embedded dangling references, and (2) Php-

Sync [105]—an bug-locating and fix-propagating tool for HTML validation errors.

• Output coverage visualization for output-oriented testing : To guide testers in select-

ing additional test cases, we design a tool named WebTest that displays all possible

outputs in one single web page and allows testers to visually explore covered and

uncovered parts of all outputs. The testers can use WebTest to either augment

www.manaraa.com

12

test cases or navigate and inspect the output directly to detect certain classes of

presentation faults.

Besides the core analyses and services mentioned above, our framework is designed

to be extensible and adaptable. The modules in layers 1 and 2 can be improved or

replaced without breaking the working of the modules in the other layers. Layer 3

can be augmented with new type of analysis such as creating a cross-language program

dependence graph for a web application. As for layer 4, web developers can not only

make use of our existing tools but can also extend the framework to create new ones. For

example, one can leverage the cross-language data flows and program slices provided in

layer 3 to create a security tool that scans for sensitive flows and identifies vulnerabilities.

In summary, this thesis makes the following contributions:

1. Concepts: (1) the new concept of embedded client code in web code, (2) the

notion of call graph for embedded client code, (3) the notion of program slices

across different languages, and (4) the notion of different types of testers concerning

different aspects of the software including its output, as well as a family of output

coverage metrics of a test suite

2. Representations: The D-Model representation encoding different possible textual

contents of the output and the VarDOM representation which compactly represents

DOM variations generated from the server-side code

3. Algorithms: A systematic approach combining symbolic execution, variability-

aware parsing, and variability-aware analysis (1) to build call graphs for embedded

HTML, CSS, and JS code, (2) to compute cross-language data-flow relations and

program slices, and (3) to compute output coverage metrics

4. Tooling: A toolchain that provides various kinds of software development sup-

port for dynamic web applications including IDE services, fault localization, bug

detection, and testing

www.manaraa.com

13

5. Empirical studies: Empirical evaluations on several real-world web applications

to investigate the complexity of call graphs, data flows, program slices, the accuracy

of bug detection, and the effectiveness of output coverage metrics, showing the

analyses’ accuracy, efficiency, and usefulness

The remainder of this thesis is organized as follows. Chapter 2 gives the necessary

background on web application analysis, as well as some motivation as to why there

is still a gap in supporting web development activities. Chapter 3–6 discuss in detail

the techniques included in layers 1–4 of our framework, respectively. Next, Chapter 7

presents our empirical studies to investigate the accuracy, efficiency, and usefulness of

our cross-language program analysis techniques. Finally, Chapter 8 summarizes the key

ideas presented and make some concluding remarks.

www.manaraa.com

14

CHAPTER 2. REVIEW OF LITERATURE

There exist a large number of program analysis approaches for web applications.

However, existing work on dynamic web applications is still limited and lacks a foundation

for program analysis methods as well as software development services for multilingual

web applications. In the following, we discuss the literature based on different types of

analysis for web programs and related techniques to the ones used in our framework.

2.1 Web Application Analysis

2.1.1 Analyzing the Output of a Web Application

Many researchers have investigated the output of web applications and the relation-

ship between code and output for various purposes. Minamide [98] uses a string analyzer

to statically approximate PHP-based, generated HTML pages and validate them. His

string analyzer takes a PHP program and an input specification (in the form of a regular

expression), which describes the set of possible inputs to the PHP program [98]. The

analyzer approximates the output of a PHP program as a context-free grammar. Wang

et al. [143] uses the string analyzer in Minamide’s [98] to locate constant strings that

need to be translated in a web application. It computes the approximated outputs of a

PHP program and identifies the constant strings visible from the browser for translation

via its flag propagation scheme.

www.manaraa.com

15

2.1.2 Web Application Security

Several string taint-analysis techniques were built for PHP web programs and software-

security problems [151, 153, 145]. Wassermann and Su introduced a string-taint anal-

ysis technique [144] based on Minamide’s string analyzer in order to detect cross-site

scripting security flaws [145]. Extending further, Wassermann et al. [146] developed

an approach to generate test cases for such vulnerabilities. Also based on Minamide’s

work, several detection techniques were developed for SQL injection vulnerabilities in

web scripts [151, 80]. Halfond and Orso [55] propose an approach to prevent SQL injec-

tion attacks. It uses program analysis to build a model of legitimate queries that can be

generated from the application, and runtime monitoring for dynamic queries’ inspection.

2.1.3 Bug Detection for Web Applications

Artzi et al. [17] introduced Apollo, a method to find bugs in web applications by

combining concrete and symbolic execution. It executes a web application on an initial

empty or randomly-chosen input. Additional inputs are derived by solving path con-

straints and conditions extracted from exercised control flow paths [17]. Failures during

such executions are reported as bugs. In [18], they extended Apollo to also model inter-

active user inputs in a web application. However, it does not pinpoint the buggy PHP

statements that cause such errors.

To support such fault localization, in [16], they combined a variation of Tarantula [73]

with the use of a dynamic output mapping technique. For each statement, Tarantula

associates it with a suspiciousness rating that indicates the likelihood for the statement

to contribute to a fault. The rating is computed based on the percentages of passing

and failing tests that execute that statement. However, they reported that in a web

application, a significant number of statements/lines are executed in both cases, or only

in failing executions. Thus, they combined Tarantula with a dynamic output mapping

technique, which instruments a shadow interpreter to create a mapping between the lines

www.manaraa.com

16

in PHP and HTML code by recording the line number of the originating PHP statement

whenever output is written out using the echo and print statements [16].

Tidy [137], an HTML validator/corrector, works mostly on static HTML pages. For

PHP code, it filters all the code within a ’<?php’ and the corresponding ’?>’ and considers

the remaining as HTML code. That scheme does not work well because HTML code

is embedded within multiple scattered PHP literals and variables. Similar to Tidy,

other validating tools are limited to support validating or correcting only client pages in

XML/HTML/CSS.

2.1.4 Fault Localization for Web Applications

Clark et al. [30] support fault localization inside an SQL command embedded within

JSP code. They cannot address the cases where the faults occurred in JSP and made the

SQL command incorrect. Halfond et al. [90, 91] identifies the root cause of presentation

failures in web applications that uses image processing and search-based techniques.

There are several other fault localization approaches for individual language in traditional

applications [73, 1, 74, 84, 126, 62, 36, 86, 88, 82, 2, 3, 115, 120, 154, 69]. However, they

do not address the challenges in dynamic web applications.

2.1.5 IDE Services for Web Application Development

State-of-the-art IDEs do not provide call-graph-based editor support such as “jumps

to declaration” for embedded client code. Recent works such as PHPQuickFix and

PHPRepair [125] detect and fix errors in server-side PHP applications leading to ill-

formed generated HTML. PHPQuickFix [125] examines constant prints, i.e., the PHP

statements that print directly string literals and repairs HTML ill-formed errors. It

analyzes each string literal separately and can only identify local issues. PHPRepair [125]

follows a dynamic approach in which a given test suite is used to generate client-side code

with different server-side executions, while tracing the origin of output strings.

www.manaraa.com

17

2.1.6 Call Graph in Web Applications

There is a significant amount of work on constructing call graphs for JS code [43,

44, 54, 70, 71, 89, 129]. Accuracy and performance face challenges due to the dynamic

nature of JS code and its interactions with the DOM and the browser. Kudzu [127] is a

symbolic execution engine for JS. These tools are aimed at improving IDE services, but

they all target plain client-side code, not code embedded in server-side programs.

2.1.7 Web Application Slicing

There has been rich literature in program slicing [87, 59, 24, 152, 21, 147, 82, 111, 109,

38, 48, 56, 113, 62, 28, 33, 45, 72, 60] and several excellent surveys on different techniques

for program slicing [139, 22, 57, 58]. Harman et al. [57] provide an extensive survey

with a classification with multiple dimensions in order to classify new program slicing

techniques. Later, Silva extends the classification with a total of 12 dimensions [131].

None of existing program slicing approaches support cross-language slicing or PDG/CFG.

To approximate the dynamically generated client code, Tonella and Ricca [140, 122,

123] propose a flow analysis called string-cat propagation to associate the variables used

in print/echo statements to string concatenations. They also combine with code extrusion,

which unquotes the strings in echo. A slice is computed from such flows.

There also exists the information-flow approach to compute slices by Bergeretti and

Carré (BC) [21]. The information-flow relations are recursively computed in a syntax-

directed, bottom-up manner.

There are static slicing approaches based on various static analyses, e.g., incremental

slicing [111], call-mark slicing [109], proposition-based slicing [38], stop-list slicing [48],

amorphous slicing [56]. Our approach is related to PDG-based slicing [113, 62]; however,

they do not deal with flows to embedded code. There are dynamic slicing approaches [82,

23, 72, 92], including language-independent slicing [23], which compute a slice for one

specific execution and do not produce a static slice for all possible executions.

www.manaraa.com

18

2.1.8 Web Application Testing

Supporting testing, especially web testing, from the perspective of a tester interested

in the output has received increased attention recently.

First, Alshahwan proposed output-uniqueness test selection criterion [9, 8]. The cri-

terion aims to maximize the differences among the observed outputs. They proposed

seven syntactic abstractions pertinent to web applications to avoid sensitivity to nonde-

terministic output, and performed an empirical study to show that output uniqueness

can be used as surrogate for whitebox testing. They measure coverage only as the abso-

lute number of distinct observed outputs of a test suite, but have no notion of an output

universe that could identify uncovered outputs.

Second, Zou et al. [155] introduce a V-DOM coverage for web applications. They

convert a PHP program into C code and performs static analysis for control flows and

data flows to build a V-DOM tree. V-DOM’s nodes represent all possible DOM objects

that can appear in any possible executions of a page. V-DOM coverage is defined as the

ratio of the number of covered DOM objects over the total number of DOM objects.

Third, DomCovery [99] is another DOM-based coverage criteria for web applications.

The coverage is defined at two levels: (1) the percentage of DOM states and transitions

covered in the total state space, and (2) the percentage of elements covered in each

particular DOM state.

With regard to output uniqueness for testing, several other researchers also introduced

the concept of equivalent classes [112, 148, 53] where an element in a class leads to a

correct output if all elements in the class lead to correct output. Subdomain partition

methods are proposed for the input space via specification analysis [112]. Richardson

and Clarke [124] use symbolic evaluation to partition the set of inputs into procedure

subdomains so that the elements of each subdomain are processed uniformly by testing.

Overall, there is a rich literature on web testing [37, 83]. This adopts many quality

assurance strategies developed in other contexts to the specifics of web applications,

www.manaraa.com

19

including dynamic symbolic execution [146, 18, 127], search-based testing [7, 4, 93],

mutation testing [117, 66], random testing [47, 15, 61], and model-based testing [121, 11];

they are all focused on analyzing the source code of the web application. Also, several

specialized techniques to generate test cases by crawling the web page [94, 95, 51, 119, 96]

and collecting session data [40] have been explored. As suggested previously [9], output

coverage can be used a post-processing step to select a subset of the test cases generated

by these tools in order to focus on output defects.

2.2 Related Techniques

2.2.1 Web Engineering

Web engineering is an important line of research that applies software engineering

into web applications. Di Lucca et al. [34] developed Page Control Flow Graph (PCFG)

to describe the dependencies among web pages. Earlier, they developed WARE [35], a

dynamic analysis framework for reverse engineering of a web application. There exists

much research on exploring flows among web pages for testing [15, 94, 128], for program

comprehension [34], and for maintaining a distributed event-based system [49]. However,

they do not build cross-language program slices at the level of entities. Orso et al. [6] use

string analysis to discover client-side and server-side input validation inconsistencies.

2.2.2 String Analysis

There exist string analysis approaches for web programs and software security [98, 80,

145, 151, 153, 5]. They can be used to extract embedded code in our analysis. This line

of research uses string analysis to approximate the output of server-side code. Minamide

proposed a string analyzer [98] that takes a PHP program and a regular expression

describing the input, and validates approximate HTML output via context-free grammar

analysis. Wang et al. [143] compute the approximated output of PHP code and identify

www.manaraa.com

20

the constant strings visible from a browser for translation. Both do not aim to analyze

multiple variants of embedded code in JS or CSS. Several string taint-analysis techniques

were built for PHP web programs and software-security problems [80, 145, 151, 153, 6].

In general, those approaches compute the output of the server code. However, they are

limited in supporting the analysis of the semantics of the client code. We plan to provide

foundational analyses that cross the client and server sides and multiple languages.

Outside the web context, there has been significant research on analyzing generators

and guaranteeing invariants for the generated code [29, 63, 64, 108]. Staged programming

languages such as MetaML integrate generators inside the language and can guarantee

well-typedness of a program across all stages [75, 134]. They can give precise guarantees,

but are only applicable with restricted, well-designed meta languages, not for arbitrary

PHP/JS computations.

String embedding of DSLs is another form of two-stage computations [46], in which

a string, such as an SQL command, is constructed in the host language and subse-

quently executed by a DSL interpreter. Here, the DSL code appears as string literals

in a host language without IDE support, just as HTML code appears as strings in PHP.

While other DSL-implementation approaches (e.g., pure embedded [65], extensible lan-

guages [41], external DSLs [79]) can potentially provide support for navigating DSL code,

our infrastructure is applicable for simple string embedding as well.

2.2.3 Symbolic Execution

Symbolic execution was initially proposed as a program testing approach [81]. More

recently, many forms of dynamic symbolic execution have been proposed to work around

undecidability problems by combining symbolic execution with testing to guide the exe-

cution to parts of a program [26, 27, 52, 130]. We use a simple form of symbolic execution

to explore many possible executions in a web application to produce possible outputs for

further analysis.

www.manaraa.com

21

2.2.4 Variability-Aware Parsing and Analysis

There is a community of researchers analyzing highly-configurable systems. The

challenge of parsing all configurations of C code without preprocessing it first led to

significant research on parsing, initially with restrictions or heuristics [20, 114] and then

in a sound and complete fashion supporting arbitrary use of conditional compilation with

our parser-combinator framework TypeChef [78] and later with a modified LR parser [50].

For an overview of this field, see a survey [135].

An abstract syntax tree with variations (either optional or choice nodes [42]) is

a common abstraction for further variability-aware analysis over large configuration

spaces [19, 25, 77, 85, 135], typically targeted at analyzing all configurations of a soft-

ware product line without resorting to a brute-force approach of analyzing each config-

uration separately. Variability-aware analysis can be sound and complete with regard

to analyzing all configurations separately. A common strategy to avoid reimplementing

variability-aware versions of existing analyses is to reencode the build-time variability

as runtime variability and use existing analysis mechanisms that can handle runtime

variations, such as model checking [13, 116, 136].

Summary. Although there is a rich literature on web application analysis, existing

works are still disconnected and are usually applied for a single language. They face

fundamental barriers when dealing with the multilingual nature of dynamic web appli-

cations with embedded client code. Several techniques exist to target different aspects

related to web applications such as string analysis, symbolic execution, and variability-

aware parsing; however, they have not formed a systematic approach to target the core

challenges of analyzing web applications. All of the above approaches either fail to ad-

dress or only partially address the challenges in dynamic web applications discussed in

Section 1.2. The goal of this thesis is to address that gap.

www.manaraa.com

22

CHAPTER 3. OUTPUT-ORIENTED SYMBOLIC

EXECUTION

This section explains our output-oriented symbolic execution for PHP web appli-

cations [105, 102]. To analyze a web application, both the server-side code and the

generated client-side code need to be examined. Therefore, our goal is to use symbolic

execution to identify how the client-side code will be generated in all possible execu-

tions of the server-side generator. We store the result of symbolic execution with a

representation that we call D-Model [105], which compactly represents different possible

variants of the output (or generated client-side code). Let us first explain the D-Model

representation and then describe our symbolic execution to generate a D-Model.

3.1 D-Model: Representation of Outputs

Definition 1 A D-Model is an ordered tree, in which the leaf nodes represent concrete

or symbolic values, and the inner nodes represent the computations on those values.

There are two kinds of leaf nodes:

• A Literal node represents a concrete string value (e.g., “Welcome”).

• A Symbolic node represents an unresolved string value (e.g., data from user input).

There are two kinds of inner nodes:

• A Concat node represents a value that is concatenated from the values correspond-

ing to the sub-trees under that node. The order of the sub-trees represents the order

of the concatenation operation.

www.manaraa.com

23

• A Select node represents a value that could be selected from the values correspond-

ing to its sub-trees depending a condition.

A node on a D-Model also contains information about its associated PHP expression

and its original location in the server-side code (e.g., a Literal node is associated with a

PHP string constant in the source code, and a Select node is associated with the PHP

expression for its condition).

D-Model is used to represent any value resulted from a symbolic execution on any

portion of the server-side PHP code (it can also be used for other server-side languages

such as JSP and ASP). The D-Model for an entire PHP page is composed by the D-

Models resulted from the intermediate computations during a symbolic execution of the

PHP expressions of that page. That is, our approach creates D-Models to represent

possible values of intermediate computations and combines them into larger D-Models

for later computations. We also track the origin locations of all string values. By

performing symbolic execution on a PHP page, our approach approximates all possible

outputs/client-side pages with a single D-Model.

For illustration, we use a slightly larger example than the one in the first chapter to

illustrate our concepts. Figure 3.1 shows an example PHP web application adapted from

AddressBook-6.2.12. The main program (Figure 3.1a) generates different HTML input

fields in an HTML form and different definitions of two JS functions with the same name

update, depending on whether the AJAX option is enabled. The top and bottom parts

of the page are generated by the files in Figures 3.1b and 3.1c, respectively. Note that

the client code (written in HTML, JS, CSS) often appears in the server code as string

literals or inline code (which is separated from PHP code by the directive <?php...?> and

is sent verbatim to the client side when the PHP program is executed).

Figure 3.2 displays a D-Model that represents the output of the index.php page. The

root node of the D-Model is a Concat node, representing that the corresponding output of

www.manaraa.com

24

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

<?php
include("header.php");

echo '<form method="' . $_GET['method'] . '" name="searchform">';
if ($ajax)
 $input = '<input ... onkeyup="update()" />';
else
 $input = '<input ... onkeyup="update()" />' .
 '<input type="submit" />';
echo $input;
echo '</form>';
?>

<script type="text/javascript">
<?php if ($ajax) { ?>
 function update() { ...
 }
 </script>
<?php } else { ?>
 function update() { ...
 }
 </script>
<?php } ?>

<?php include("footer.php"); ?>

(a) index.php
<html ... <?php if ($rtl) echo 'dir="rtl"'; ?>> ...
 <style type="text/css">
 <?php if ($rtl) { ?>
 #footer { float: left; }
 <?php } ?> ...
 </style> ...
 <body> ...

1
2
3
4
5
6
7

(b) header.php

 <div id="footer"> ... </div>
</body>
</html>

1
2
3

(c) footer.php

Figure 3.1 An example PHP program with call-graph edges for embedded client code
(string literals and inline client code are highlighted in blue)

this PHP page is concatenated from multiple values. Some of the values can be selected

from alternative values, which are represented by the sub-trees of a Select node. For

example, the left and right sub-trees under the Select node α ($rtl) represent the string

literal dir=“rtl" and an empty string, corresponding to the two cases that the configuration

option $rtl evaluates to TRUE or not. We use Greek letters to represent symbolic values in

the conditions of Select nodes or unknown values in Symbolic nodes (e.g., $_GET[‘method’]).

3.2 Symbolic Execution to Approximate Outputs

3.2.1 Key Ideas

We develop a symbolic execution engine called PhpSync to approximate all possible

alternatives of the output of a PHP web application. Our key insight is that although the

number of concrete outputs may be infinite, there are usually a finite number of structures

www.manaraa.com

25

α ($rtl)

CONCAT

dir= rtl

<html

empty

>

α ($rtl)

#footer {float: left;}

<style= text/css >

empty

</style>

β ($ajax)

<input onkeyup= update() />

<body><form method=
</form>

<script type=
 text/javascript
...

<input onkeyup= update() />
<input type= submit />

CONCAT

CONCAT

CONCAT

LiteralCONCAT SELECT

Φ ($_GET[method])

 name= searchform >

SymbolicLegend:

Figure 3.2 D-Model representation for the output of the PHP program in Figure 3.1

on a web page that we can derive. During execution, PhpSync considers all unknown

values, such as user input and data from a database, as symbolic values (represented by

D-Model Symbolic nodes). When reaching control-flow decisions, it explores all possible

paths, keeping track of the current path condition and ignores executions with infeasible

path constraints. Note that output fragments can be concrete, produced from string

literals inside the PHP code (possibly after several reassignments, concatenation, and

other string processing steps), or symbolic. During symbolic execution, we track all

output of the executed PHP code and record the path constraint under which each output

fragment was produced. Additionally, we track the origin location of each string literal

such that we can map all output back to the original PHP literals. The result of symbolic

execution is a D-Model representing the number of possible client-side implementations

generated from the PHP code, in which each character or symbolic value has a path

constraint and origin information. Our symbolic executor processes a PHP page using

specific rules and repeats this process on other pages to approximate the output of all

pages in a web application.

www.manaraa.com

26

3.2.2 Evaluation Rules

We use the following notation to describe our technique. V is the set of all values

(including special values represented by D-Models). C is the set of all control codes that

represents the returned values of statements (e.g., ‘RETURN’ or ‘BREAK’). S, E, and N

are the sets of all statements, expressions, and identifiers, respectively. Π is the set of

all path constraints; each constraint is a propositional formula. P(S) is the powerset of

a set S. We use small letters for elements of a set (e.g., s ∈ S is a statement).

Figure 3.3 shows the key evaluation rules. During symbolic execution, we maintain

a program state (V , π) where the value store V : N 7→ V is a (total) function mapping

a variable/function name to its value (uninitialized variables have a ⊥ value), and the

path constraint π encodes the branch decisions taken to reach the current state. For

a statement s, a rule 〈〈s,V , π〉〉 → 〈〈c,V ′, π′〉〉 denotes that the execution of s changes

the program state from (V , π) to (V ′, π′). The returned value c is a control code: It

returns ‘OK’ if there was no control-flow breaking instruction in s (i.e., the next sequential

statement can be executed) and other control codes (e.g., ‘RETURN’) otherwise. For an

expression e, a rule 〈e,V , π〉 → 〈v,V ′, π′〉 denotes that the evaluation of e results in a new

program state and returns a (non-control) value v. We use addOutput to record a string

or symbolic value in the output (under a path constraint). Other notation and auxiliary

functions are listed at the end of Figure 3.3. PhpSync processes PHP statements and

expressions as follows.

Variable access (rule 1). When a variable is accessed for a computation, PhpSync

looks up its value in the value store V .

Assignments (rule 2). PhpSync computes the value of the right-hand-side expres-

sion and updates the value store V with this new value of the variable on the left-hand

side of the assignment. The computed value is represented by a D-Model (or a Literal

node if the right-hand-side expression is a string literal).

www.manaraa.com

27

Initialization:

V(x) =⊥ π = TRUE

1. Variable Access:

v = V(n)

〈$n,V, π〉 → 〈v,V, π〉

2. Assignment:

〈e,V, π〉 → 〈v,V ′, π〉
〈$n = e,V, π〉 → 〈v,V ′[n 7→ v], π〉

3. If Statement:

〈e,V, π〉 → 〈v,V ′, π〉 π′ = whenEqual(v,TRUE) isSat(π ∧ π′) isSat(π ∧ ¬π′)
〈〈s1,V ′, π ∧ π′〉〉 → 〈〈c1,V1, π ∧ π′〉〉 〈〈s2,V ′, π ∧ ¬π′〉〉 → 〈〈c2,V2, π ∧ ¬π′〉〉

V3(x) = select(π′,V1(x),V2(x))

〈〈if (e) s1 else s2,V, π〉〉 → 〈〈select(π′, c1, c2),V3, π〉〉

〈e,V, π〉 → 〈v,V ′, π〉 π′ = whenEqual(v,TRUE) ¬isSat(π ∧ ¬π′)
〈〈s1,V ′, π〉〉 → 〈〈c1,V1, π〉〉

〈〈if (e) s1 else s2,V, π〉〉 → 〈〈c1,V1, π〉〉

〈e,V, π〉 → 〈v,V ′, π〉 π′ = whenEqual(v,TRUE) ¬isSat(π ∧ π′)
〈〈s2,V ′, π〉〉 → 〈〈c2,V2, π〉〉

〈〈if (e) s1 else s2,V, π〉〉 → 〈〈c2,V2, π〉〉

4. Function Declaration:

λ is a pointer to function n($n1, ..., $nm){s}
〈〈function n($n1, ..., $nm){s},V, π〉〉 → 〈〈OK,V[n 7→ λ], π〉〉

5. Function Invocation:

λ = V0(n) λ is a pointer to function n($n1, ..., $nm){s}
〈ei,Vi−1, π〉 → 〈vi,Vi, π〉, ∀i ∈ [1..m] Vf (x) =

{
vi if x = ni
⊥ otherwise

〈〈s,Vf , π〉〉 → 〈〈c,Vf ′ , π〉〉
〈n(e1, ..., em),V0, π〉 → 〈Vf ′(‘RET’),Vm, π〉

6. Return Statement:

〈e,V, π〉 → 〈v,V ′, π〉
〈〈return e,V, π〉〉 → 〈〈RETURN,V ′[‘RET’ 7→ v], π〉〉

Figure 3.3 Evaluation rules for output-oriented symbolic execution

www.manaraa.com

28

7. Block of Statements:

〈〈s1,V, π〉〉 → 〈〈c1,V1, π〉〉 π′ = whenEqual(c1,OK)
isSat(π ∧ π′) 〈〈s2,V1, π ∧ π′〉〉 → 〈〈c2,V2, π ∧ π′〉〉

V3(x) = select(π′,V2(x),V1(x))

〈〈s1s2,V, π〉〉 → 〈〈select(π′, c2, c1),V3, π〉〉

8. While Statement:

〈〈if (e) {s while (e) s},V, π〉〉 → 〈〈c,V ′, π〉〉
〈〈while (e) s,V, π〉〉 → 〈〈c,V ′, π〉〉

9. Include Expression:

〈e,V, π〉 → 〈v,V1, π〉 〈〈s,V1, π〉〉 → 〈〈c,V2, π〉〉

s =

{
parseF ile(v) if v is a concrete value
empty statement otherwise
〈〈include e,V, π〉〉 → 〈〈V2(‘RET’),V2, π〉〉

10. Infix Expression:

〈e1,V, π〉 → 〈v1,V1, π〉 〈e2,V1, π〉 → 〈v2,V2, π〉

v =

{
concat(v1, v2) if op is concatenation
symbolic(e1 op e2) otherwise
〈e1 op e2,V, π〉 → 〈v,V2, π〉

11. Echo Statement:

〈e,V, π〉 → 〈v,V ′, π〉 addOutput(v, π)

〈〈echo e,V, π〉〉 → 〈〈OK,V ′, π〉〉

Notation and auxiliary functions:
- 7→ denotes total functions.
- g = f [x 7→ y] denotes a function same as f except that g(x) = y.
- symbolic(e) returns a fresh symbolic value mapped to an expression e.
- select(π, v1, v2) returns an alternative value of v1 or v2 depending on π.
- concat(v1, v2) returns a concatenation of v1 and v2.
- isSat(π) returns TRUE if π is satisfiable and FALSE otherwise.
- whenEqual(v, v′) returns the constraint under which v equals v′, e.g.
whenEqual(select(α,TRUE,FALSE),TRUE) returns α,
whenEqual(select(α > 1,TRUE,FALSE),TRUE) returns (fresh) β.
- parseF ile(v) parses a PHP file v and returns the parsed program.
- addOutput(v, π) records value v under constraint π in the output.

Figure 3.3 (Continued)

Symbolic execution rules on PHP code to build D-Models

www.manaraa.com

29

$message = ;
 (message) =

 (message) =

 (message) = Welcome admin!

 (message) = Access denied.

 (message) = select(μ, Welcome admin! ,
 Access denied.)

 (message) =

μ: $_GET[user] == admin

if ($_GET[user] == admin) {

 $message = Welcome admin! ;

} else {

 $message = Access denied. ;

}

...

1

2

3

4

5

6

7

Figure 3.4 Executing conditional statements

Conditional statements (rule 3). If the path constraints of both branches of an if

statement are satisfiable, we explore both branches. The function whenEqual(v,TRUE) is

used to compute the constraint where a value v (evaluated from the if condition) evaluates

to TRUE. For example, the conditions on lines 2 and 7 of Figure 3.4 are both resolved

into α == ‘admin’ where α is the symbolic value for $_GET[’user’]; thus, we evaluate the

both conditions into the same (fresh) symbolic value µ (to simplify constraint checking).

Modifications to the value store V take effect in the corresponding branch only. After

executing the branches, we update the value store with the combined values from the

two branches together with their corresponding constraints. To represent that a variable

may have multiple values depending on a path constraint, we use a D-Model Select

node (select(π, v1, v2)) to represent a selection between value v1 if the path constraint π

evaluates to TRUE and v2 otherwise (we also use Select for control codes). Note that if the

path constraint of one of the branches is unsatisfiable, we execute the other (satisfiable)

branch only. As an illustration, in Figure 3.4, the variable $message after line 6 has two

alternative values from both branches.

Functions (rules 4–6). Similar to concrete execution, PhpSync evaluates a func-

tion call in three steps (if the source code is available; otherwise, it returns a symbolic

www.manaraa.com

30

value): First, it sets up a new context/call stack for the function and passes the actual

parameters to the formal parameters of the function. Second, it executes the function

body and records all returned values (here represented by a special variable named ‘RET’)

encountered when exploring different paths in the function. Third, the returned value(s)

are propagated to the call site of the function. The details are shown in rules 4–6. Note

that for scalability, PhpSync does not execute a recursive function call.

Block of statements (rule 7). In a block of statements, the returned control

code after executing a statement can be ‘OK’, indicating that the next statement can be

executed, or other control codes otherwise (e.g., ‘RETURN’ for a return statement). Note

that the returned control code can also represented by a D-Model Select node (e.g., the

returned code of an if statement). Therefore, after each statement, we compute the path

constraint under which the next statements can be executed (i.e., the constraint with

which the returned control code equals ‘OK’) and execute them under that restricted

constraint. After executing the block, we update the value store similarly to the case

of an if statement. If the computed constraint is not satisfiable, we simply stop the

execution for that block (not shown). In rule 7, we show the algorithm for a block of

two statements. Note that the rule for a block with more statements can be generalized

from this rule.

Loops (rule 8). We execute a loop by modeling the loop as recursively nested if

statements with the same condition and body code. We first applying the rule for an if

statement to execute the first iteration and then recursively execute the next iterations in

the same manner. If the loop contains control-flow breaking instructions (such as break,

continue, or exit), we either abort the loop (for break, return, and exit) or continue the next

iteration (for continue) in their respective constraints (not shown). For scalability, we

typically limit the number of iterations at one (i.e., the loop terminates after at most

one iteration).

www.manaraa.com

31

Dynamically included files (rule 9). A PHP program can dynamically include

other files. During symbolic execution, we execute these files if the file names can be

resolved to concrete values. Since include is an expression in PHP, we treat the returned

value of include similarly to the returned value of a function call.

Computing the output (rules 10–11). The output of a PHP program is usually

a concatenation of multiple string values and is printed out through echo/print statements

or inline HTML code. To keep track of concatenations, we use a D-Model Concat node

(concat(v1, v2)) to represent a concatenation of two (possibly symbolic) values v1 and v2

(rule 10). At echo/print statements or inline HTML code, we simply record the computed

value v of expression e for the output in the corresponding path constraint (rule 11).

(An echo e statement is a concatenation of the value of e with the current output, i.e. it

can be treated as an equivalent assignment $OUTPUT = $OUTPUT . e, where $OUTPUT

is a special variable representing the current output.) The use of Concat values and Select

values allows us to track the symbolic output with conditional fragments efficiently.

Limitations. We have made several design strategies to our symbolic-execution

engine so that it can scale when computing all possible outputs of a PHP web application.

Because of these simplifications, the engine has several limitations. Currently, we handle

common PHP constructs and functions only since the PHP APIs are large. Specifically,

(1) we have limited support for control-breaking statements (e.g., BREAK, RETURN, EXIT)

or operations with objects and arrays in the presence of symbolic or conditional values,

and (2) we implement infix expressions with the concatenation operator only since we are

interested in the string output of a program (for other operators, we create fresh symbolic

values to represent the results—for instance, we track α > 1 as a new symbolic value

β). Because of the conservative approximations with symbolic values and the limitations

of external constraint solvers (especially with strings and objects/arrays), the engine

may explore some infeasible paths. It runs exactly one iteration of each loop and skips

www.manaraa.com

32

recursive function calls. Our approach also does not handle well library function calls

in the presence of symbolic and conditional values since their source code is unavailable.

Similarly, if the currently executed file invokes another file (by using the PHP expression

include) and the expression for the file is resolved to a symbolic value, the engine is

unable to execute that file. Because of these limitations, the symbolic-execution engine

is unsound and incomplete. Nonetheless, our design strategies allow the engine to scale

to real-world web applications.

www.manaraa.com

33

CHAPTER 4. PARSING CONDITIONAL SYMBOLIC

OUTPUT

To enable analysis on the generated client code, we first need to parse the output

computed from the symbolic execution on the server-side code into a conditional DOM

called VarDOM that compactly represents all variations of the generated client-side code.

Let us first describe the VarDOM and subsequently explain how we derive it from the

textual output of symbolic execution with variability-aware parsing [101].

4.1 VarDOM: Representation for Conditional DOM

<html>

<style> <body>

<form>

<input> <input> <input>

<script>

β !β !β

β

function
update() { }

!β

function
update() { }

α

#footer { float:left; }

dir: "rtl"α

id: "footer"<div>

onkeyup: "update()"

onkeyup: "update()"

type: "submit"

L6, Fig. 3.1a

L8, Fig. 3.1a

L16-17, Fig. 3.1a L20-21, Fig. 3.1a

L4, Fig. 3.1b

L1, Fig. 3.1c
<Element> HTML element

HTML text

Cond

HTML attributeName: Value

Condition node

Attribute of an
element

DOM structure

Text

Document

Document HTML document

<script>

L14-18, Fig. 3.1a L14-22, Fig. 3.1a

α: $rtl β: $ajax

Figure 4.1 VarDOM: conditional representation for the client-side code of the PHP
program in Figure 3.1

Just as the DOM represents the hierarchical syntactic structure of a web page with

nested nodes of four types (HTML elements, attributes, text, and comments), a VarDOM

www.manaraa.com

34

represents the tree structure of a web page with variations. The key difference is that

in a VarDOM all elements can be conditional, that is, they are part of the web page

only given a specific condition called presence condition. We model conditional elements

with condition nodes in the tree, where the condition node holds the presence condition

for its subtree, as illustrated in Figure 4.1. Note how this representation can compactly

represent variations within similar pages; in our running example, possible client-side

pages differ with regard to input fields depending on whether AJAX is enabled, but all

pages share the same <html> and <body> elements. Conceptually, it is possible to move

condition nodes up the VarDOM hierarchy by replicating code fragments yielding a less

compact representation (see the choice calculus for a formal treatment [42]).

4.2 Variability-Aware Parsing to Construct VarDOM

To transform the character stream into a VarDOM that represents the structures of

the client-side implementation, we use variability-aware parsing. Since the output of

symbolic execution contains conditional characters (only printed under given path con-

straints) and symbolic characters, parsing is challenging. A regular parser can only be

used on code without conditional text and therefore would not be able to parse such out-

put. Fortunately, the problem resembles closely the challenge of parsing unpreprocessed

C code that still contains #if directives, which has been solved recently [78]. To illustrate

the similarities, we list the output of symbolic execution as code with #if directives in

Figure 4.2.

In Figure 4.2, the path constraints are represented using #ifdef preprocessor direc-

tives. Next to a path constraint, we also show the source code of the corresponding PHP

expression in a comment. (For readability, we omit origin information in this listing.)

As can be seen in Figure 4.2, the texts on lines 3, 8, 14, 16, and 17 are optional de-

pending on a condition, whereas the other parts are always present in the output. The

www.manaraa.com

35

1 <html
2 #if α // $rtl
3 dir="rtl"
4 #endif
5 >
6 <style type="text/css">
7 #if α // $rtl
8 #footer {float : left ;}
9 #endif
10 </style>
11 <body>
12 <form method="Φ" name="searchform">
13 #if β // $ajax
14 <input ... onkeyup="update()"/>
15 #else
16 <input ... onkeyup="update()"/>
17 <input type="submit" />
18 #endif
19 </form>
20 <script type="text/javascript"> ...

Figure 4.2 An excerpt of the conditional output of the PHP program in Figure 3.1
represented with conditional-compilation directives (converted from the D–
Model in Figure 3.2). Greek letters represent symbolic values.

output contains not only concrete strings but also symbolic values (e.g., Φ). Note that

this (conditional, symbolic) output contains only textual information without syntactic

information, i.e. all parts are treated as text regardless of whether they contain HTML,

JS, or CSS code.

Next, we explain how we will use TypeChef to parse this text into a VarDOM with

a lexer, a SAX parser, and a DOM parser.

1. Lexer. From symbolic execution’s output (a D-Model), the lexer produces a

sequence of conditional characters. The condition of each character is derived from the

path constraint under which the output was produced during symbolic execution (repre-

sented with #if directives in Figure 4.2). We preserve the same formalism for formulas

and satisfiability checking used during symbolic execution (propositional formulas and

SAT solvers in our implementation). The lexer produces a special string value SYM for

www.manaraa.com

36

<form method="Φ" name="searchform">

#if β //'$ajax'

<input ... onkeyup="update()"></input>

#else

<input ... onkeyup="update()"></input>

<input type="submit" /></input>

#endif

</form>

Output with variability

Variability-
Aware HTML
SAX Parser

Sequence of conditional characters

Sequence of conditional tokens

OpenTag (form)

Variability-
Aware Lexer

<

True

f

True

o

True

r

True

m

True

<

β

i

β

n

β

p

β

<

!β

i

!β

n

!β

m

True

 ..

 ..

 ..

 ..

OpenTag (input)β

CloseTag (input)β

OpenTag (input)!β

CloseTag (form)

 ..

<form>

<input> <input> <input>

β !β !β

onkeyup: "update()"

onkeyup: "update()"

type: "submit"

Document

method: "SYM"method: "SYM"

name: "searchform"
name: "searchform"

VarDOM (excerpt)

Variability-
Aware HTML
DOM Parser

>

True

r

True

u

β

t

β

 ..

o

True

L4, Fig. 3.1a

L4, Fig. 3.1a
D

o
cu

m
e

n
t

L4, Fig. 3.1a

L4, Fig. 3.1a

SYM

True

 ..

Figure 4.3 Parsing output with variability to build a VarDOM

symbolic values in the output and propagates origin locations from the PHP code for

every individual character. We exemplify the step for our example in Figure 4.3.

2. SAX parser. To deal with the complexity of HTML, we proceed in two steps

common in HTML parsers. The first step recognizes nodes and their attributes in a

flat structure (SAX-style parsing) whereas the second step builds a tree from those

nodes (DOM parser). The SAX parser takes the stream of conditional characters and

produces a list of conditional nodes. Nodes can be opening tags with a name and possibly

conditional attributes (e.g., <div id=‘i’>), closing tags with a name (e.g., </div>), or

text fragments containing possibly conditional characters. The parser accepts symbolic

tokens in text, as tag names, as attribute names, as attribute values, or as whitespace.

As seen in Figure 4.3, this parsing step produces a very shallow parse tree of a document

with a list of conditional tags, texts, and comments, of which start tags can contain

conditional attributes, and texts/comments can contain conditional characters. The

parser framework propagates origin locations and presence conditions.

www.manaraa.com

37

3. DOM parser. In the next parsing step, we use the document’s list of conditional

nodes from the previous step as conditional token sequence for the subsequent DOM

parser. The DOM parser itself is simple, since it recognizes only a tree structure based

on matching starting and closing tags. However, the context-sensitive nature of checking

well-formedness in HTML requires matching names in opening and closing tags, for

which we wrote a simple combinator. Again, the parser framework propagates origin

locations and presence conditions. In the VarDOM of our running example, exemplified

in Figure 4.3, the first input field is guarded by condition node β ($ajax), and the other

input fields are guarded by condition nodes ¬β (!$ajax). (Note that we simply propagate

attributes inside nodes and variations inside text nodes from the SAX parser.)

Reporting parsing errors. During parsing, the two parsers reject ill-formed

HTML code (the first parser rejects invalid syntax of tags and attributes and the second

parser rejects invalid nesting and missing closing tags). In each case, the parsers report

a conditional error message for invalid configurations (with location information tracked

from the initial PHP code) and a parse tree for the remaining configurations.For exam-

ple, the HTML DOM parser would report a missing closing tag for <div> in line 2 in the

example below in the configurations with $C evaluating to true.

PHP code: Output of symbolic execution:

1 if ($C)

2 $div = '<div>';

3 else

4 $div = '' ;

5 echo '<form>' . $div . '</form>';

1 <form>

2 #if α // '$C'

3 <div>

4 #endif

5 </form>

Although relaxed or error-recovering parsing is conceptually possible, rejecting ill-formed

code has the additional benefit of being able to report client-side errors during devel-

opment while embedded in server-side code. In addition, we could easily check validity

www.manaraa.com

38

and other invariants on top of the VarDOM representation, reporting conditional error

messages when structural assumptions are violated.

Assumptions and limitations. The output of symbolic execution may contain

symbolic values representing a potentially infinite number of possible client-side pro-

grams. The symbolic execution engine however explores only a finite number of paths

in the server-side code (due to our simplifications with regard to loops and recursion,

see Section 3), which allows us to parse the output into a structure with a finite number

of variations expressed through condition nodes, assuming that symbolic values do not

affect the output’s structure. Specifically, we assume that symbolic values produce tag

names, attribute names, or attribute values when used in that location and produce

well-formed HTML fragments otherwise (in which case we can parse it as text or white

space). For example, we fundamentally could not parse the output ‘<div>Ψ’ if we had to

assume that Ψ might provide the closing tag. Although it is easy to construct artificial

examples that we cannot parse, we have not seen a code fragment in practice in which

a symbolic value (e.g., from user input or another source of nondeterminism) affected

the structural well-formedness of produced client-side code. In addition, to avoid the

possible combinatorial explosion of alternatives, we enforce that HTML elements within

the alternatives must have the same type (e.g., an HTML opening <div> tag in the TRUE

branch goes with an HTML opening <div> tag in the FALSE branch).

www.manaraa.com

39

CHAPTER 5. FOUNDATION FOR CROSS-LANGUAGE

PROGRAM ANALYSIS TECHNIQUES

The VarDOM representation captures all DOM variants of the output of a server-

side program and allows us to analyze the embedded code written in HTML/JS/CSS. In

this section, we discuss novel concepts, techniques, and tools for cross-language program

analysis in PHP web applications, including (1) building call graphs for embedded client

code in different languages [101, 103], (2) computing cross-language program slices [102],

and (3) computing a novel test coverage criterion called output coverage that aids testers

in creating effective test suites for detecting output-related bugs.

5.1 Building Call Graphs for Embedded Client Code

The VarDOM is the basis for all subsequent analyses to build conditional call graphs

that can be used for tool support. Even though not executable, we interpret relationships

among HTML and CSS elements as call-graph edges as well, since they equally provide a

foundation for corresponding editor services. In general, a conditional call graph consists

of nodes reflecting positions in the server-side code. (Technically, a node can refer to

multiple positions in the source code if it was concatenated from multiple string liter-

als.) and edges representing relationships among those nodes (calls, corresponding tags,

affected CSS rules, and so forth). Edges in a conditional call graph can have a presence

condition, meaning that the node is related to another node only in certain executions

of the server-side program. For example, an opening HTML tag can be closed by two

www.manaraa.com

40

different closing tags resulting in two conditional call-graph edges, as illustrated with the

script tag in our running example (see Figure 3.1). As usual, call graph edges can be

navigated in both directions for different editor services, e.g., “jump to declaration” ver-

sus “find usage”. If the server-side code has multiple entry points (e.g., multiple .php files

a user can call), we build VarDOMs and analyze each entry separately and subsequently

merge all call graphs, in which the nodes point to the same PHP code locations.

We illustrate three analyses to extract conditional call graphs for IDE support in

HTML (“jump to opening/closing tag”), CSS (“jump to affected nodes” and “find appli-

cable CSS rules”), and JS (“jump to declaration”), each while embedded in server-side

code [101, 103].

5.1.1 Supporting HTML Jumps

We develop a call graph for HTML by defining HTML jumps from a source to a

target, in which the source is an HTML opening tag and the target is its corresponding

closing tag (either the entire tag or the name of the tag). This type of jump is useful

in helping developers understand the structures of HTML tags that would be produced

by their PHP program and find closing elements especially if they are generated from

different PHP files, such as the body tag in our running example.

Building call-graph edges for HTML jumps is straightforward. We simply traverse the

VarDOM and look up the origin locations of the opening and closing tags of each element

(as explained in Section 4.2, tokens representing opening and closing tags produced by

the SAX parser are used in the DOM parser). We create a call-graph edge between

those locations with a presence condition reflecting the element’s presence condition in

the VarDOM (i.e., a conjunction of all condition nodes between the element and the

VarDOM’s root). When an element has alternative opening or closing tags, it occurs

repeatedly in the VarDOM under alternative presence conditions (e.g., the two <script>

elements in Figures 3.1 and 4.1).

www.manaraa.com

41

5.1.2 Supporting CSS Jumps

CSS code consists of CSS rules to define styles for HTML elements. We create call-

graph edges (or jumps) between CSS rules and all HTML elements selected by them, to

support navigation among those elements within server-side code, similar to the debug-

ging facilities that many browsers provide for generated client-side code.

VarDOM

Extract
CSS Code

CSS code with variability

(Sequence of conditional characters)

<style>

α

#footer
{float:left;}

.news
{color:blue;}

#

α

Variability-Aware
CSS Parser

StyleSheet

α

CSS AST with variability

Rule

Selector(".news")

Declaration("color:blue")

f o o t

. n e w s

True

...

...

...

Rule

Selector("#footer")

Declaration("float:left")

...

Figure 5.1 Parsing CSS code with variability

Unlike our HTML-jump analysis in which opening and closing tags are directly avail-

able in the VarDOM, we need to extract CSS rules from text fragments in the VarDOM—

typically from <style> tags and from included (potentially generated) files. Notice that

each CSS fragment is a sequence of conditional characters, in which we preserved the

presence condition of the originating HTML element, and which may contain symbolic

values. To analyze the CSS code with its variations, we wrote another variability-aware

parser with TypeChef to recognize CSS as a list of conditional rules (ignoring symbolic

values as white space), illustrated in Figure 5.1. The parser framework propagates origin

locations and presence conditions.

www.manaraa.com

42

After parsing, we only need to match the selector of each CSS rule against the Var-

DOM nodes. We create a call-graph edge for every match in the VarDOM, each with a

presence condition that conjuncts the presence condition of the CSS rule with the pres-

ence condition of the matched HTML element. Edges with infeasible presence conditions

can be filtered as far as the used formalism supports it. We reimplemented the matching

algorithm for the most common selectors (class selectors, id selectors, element selectors,

and nested selectors), implementing remaining selectors is technically straightforward

following the specifications of CSS [141]. We list the CSS-related call-graph edge for our

running example in Figure 3.1.

5.1.3 Conditional JS Call Graph

To build a conditional call graph for JS, in general, we can develop a variability-aware

analysis from scratch in line with our solution for CSS. However, due to the complexity

of building call graphs already for non-embedded JS code without conditional parts [44],

we want to reuse existing infrastructures for building JS call graph. Our key idea is to

reencode JS code with generation-time variability as JS code with runtime variability, in

which the presence conditions of JS code are encoded as the conditions of regular JS if

statements enclosing those code elements. After transforming the code into regular JS

code (still tracking origin locations), we reuse WALA, an existing state-of-the-art tool for

building a JS call graph [142]. Through consistent origin tracking, we can translate the

identified call-graph nodes and edges back to their location in the VarDOM and hence

also back to the original string literals in PHP code. We derive presence conditions

for call-graph edges from the presence conditions of the involved VarDOM nodes, again

filtering infeasible edges. Our goal is to provide editor support for JS code embedded in

server-side code for every call-graph edge that WALA finds on the generated JS code.

1. Parsing JS code. As for CSS, we first extract all JS code fragments from

text elements the VarDOM. Specifically, we collect the content of HTML <script> tags,

www.manaraa.com

43

linked JS files, and all event handlers, such as onload and onclick. Again, we build a

variability-aware JS parser on top of the TypeChef framework that accepts a sequence

of conditional characters and produces a JS parse tree with conditional nodes (ignoring

symbolic values). We follow the JS grammar specification [39], but ignore the context-

sensitive semicolon-inserting feature in our prototype. To simplify subsequent steps, we

push up conditional nodes to the level of statements, that is, variations inside statements

are expanded to two alternative statements.

2. Reencoding variability. After parsing, we reencode generation-time varia-

tions (condition nodes with presence conditions in the AST) as runtime variations with

if statements. This strategy, named configuration lifting or variability encoding, has

been used in model checking and deductive verification of product lines to reuse anal-

ysis techniques that are oblivious to generation-time variations but can handle runtime

variations [116, 136, 13, 12]. We reencode variability with the following two key trans-

formation rules:

R1: Condition(cond, Statement(stmt)) →

IfStatement(String(cond), Statement(stmt))

R2: Condition(cond, FunctionDeclaration(name, params, body))

→ IfStatement(String(cond), ExpressionStatement(

AssignmentExpression(Identifier(name), "=",

FunctionExpression(params, body))))

Rule R1 reencodes a statement stmt under presence condition cond (if cond 6= true)

as a JS if statement with a condition representing cond and stmt in the then branch (e.g.,

lines 12–14 of Figure 5.2). Rule R2 for a function declaration similarly reencodes function

declaration as an equivalent assignment of a function expression inside an if statement

(e.g., lines 13 and 18 of Figure 5.2).

Conceptually, it is possible to prove that a reencoding maintains the execution se-

mantics of all configurations, e.g., by showing that the execution semantics of executing

www.manaraa.com

44

1 <html dir=``rtl">
2 <style type=``text/css">
3 #footer {float : left }
4 </style>
5 <body>
6 <form method="Φ" name="searchform">
7 <input ... onkeyup="if ('β') update()"/>
8 <input ... onkeyup="if ('!β ') update()"/>
9 <input type=``submit" />
10 </form>
11 <script type=``text/javascript">
12 if ('β ') {
13 update = function () {...}
14 }
15 </script>
16 <script>
17 if (' !β ') {
18 update = function () {...}
19 }
20 </script>
21 <div id=``footer"> ... </div>
22 </body>
23 </html>

Figure 5.2 Reencoding variability for JS code

the program is not affected by the reencoding in any configuration (where a configuration

would either remove unnecessary code at generation time or initialize the configuration

parameters equivalently to be interpreted at runtime). For our purpose, a strict no-

tion of correctness is not necessary, since we perform an unsound call-graph analysis

subsequently. It is sufficient to encode the program in a way that the analysis tool

can identify the correct call-graph edges; hence we checked correctness of our encoding

through testing only.

3. Reencoding HTML code. JS code can interact with the HTML DOM during

execution (check existence of an element, access its properties, and so forth), which the

used analysis framework WALA takes into account to some degree. WALA takes as

input an HTML document and turns it into pure JS code which generates the document

www.manaraa.com

45

using JS instruction document.createElement. WALA’s call graph building algorithm for

JS is then applied on this transformed JS code. Therefore, we reencode the entire HTML

code by removing all condition nodes from the VarDOM. The resulting HTML document

contains all possible alternative nodes in which all JS code is properly reencoded. This

reencoding of HTML is a crude approximation, but sufficient for WALA’s analysis in our

experience. For instance, we reencode our running example as in Figure 5.2 and analyze

it with WALA.

4. Call-graph generation with WALA. To create the actual call graph, we run

WALA for JS [142] on the reencoded HTML/JS code. We take WALA’s result as is

and track nodes back to their origin in the VarDOM and in the PHP code. We create

presence conditions for call-graph edges from the conjunction of the presence condition

of the two involved VarDOM nodes. In our running example, WALA in fact ignores

the conditions of the created if statements and creates a total of four call-graph edges

from each update call to each function declaration. However, since both update calls and

declarations depend on the same symbolic path condition in our example (i.e., we know

that expression $ajax has the same value β in both server-side if statements), two call-

graph edges receive infeasible presence condition β ∧¬β and can be discarded. We show

the JS call graph for our running example in Figure 3.1.

5.2 Cross-language Program Slicing

5.2.1 Concepts

In the literature, a (forward) program slice consists of the parts of a program that

may be affected by the values computed at a slicing criterion, which is a point of interest

typically specified by a program point and a set of variables [138]. Various program

slicing methods have been proposed [138], since different properties of slices might be

required for different applications. In this paper, we chose a class of program slicing

www.manaraa.com

46

that is based on data dependencies. This class is called thin slicing [132] as opposed to

traditional slicing based on both data and control dependencies, which typically produces

slices that are too large to be useful for human inspection. A full slice can always be

easily expanded from a thin slice [132]; we discuss this expansion in Section 5.2.3.5.

Specifically, we define a (forward, thin) program slice with respect to a slicing criterion

C (specified by the code location of a data entity) as a set of definitions and references

of data entities in the web application that have direct or indirect data-flow relations

from the value computed at C.

Table 5.1 Extension of data-flow relations for dynamic web applications

Relation Within one language Across languages

Def-use
(Def. to
ref. flow)

F1. A definition d and a reference
r of a variable v have a def-use re-
lation if there exists a control flow
from the statement containing d to
the statement containing r without
intervening redefinitions of v. Al-
ternatively stated, the definition of
v at statement Sd is a reaching def-
inition for Sr.

F3. A reference r and a definition d
have a cross-language def-use rela-
tion if r and d are written in differ-
ent languages, and r refers to the
entity defined at d. For instance,
the PHP variable $_POST[‘update’]
refers to the value of an HTML in-
put named ‘update’.

Info-flow
(Ref. to
def. flow)

F2. For a statement S, a reference
r of variable v1 has an information-
flow relation with a definition d of
variable v2 if the value of v1 on en-
try to S may affect the value of v2
on exit from S. As an example, in
the statement $x = $y + $z, the ref-
erences $y and $z have information-
flow relations with the definition $x.

F4. A reference r in language
L1 and a definition d in a dif-
ferent language L2 have a cross-
language information-flow relation
if r generates r∗, and r∗ forms
the code that is used in the com-
putation for the value of d. For
example, in the PHP code echo
“<input name=‘input1’ value =‘$x’>",
the value of the PHP variable $x is
assigned to the value of the HTML
input ‘input1’.

Types of data-flow relations. We propose a program-slicing technique for dy-

namic web applications that is based on the relations between the definitions and ref-

erences of data entities, namely definition-use (def-use) relations and information-flow

www.manaraa.com

47

(info-flow) relations [21], which are traditionally used for analyzing programs written in

a single language. In the context of dynamic web applications, we extend these relations

also for entities that are written in different languages (see Table 5.1).

5.2.2 Approach Overview

<form name= login >
 User ID: <input type= text name= id value= john

onkeyup= validate(this.value); />
</form>

function validate(userid) {
 ...
 xmlhttp.open(GET , user.php?id= + userid, true);
 xmlhttp.send();
}

$userid = $_GET[`id]

mysql_query(SELECT firstname FROM users WHERE id =
$userid);

SELECT firstname FROM users WHERE id = john

JavaScript code

HTML code

PHP code

SQL code

CLIENT SIDE SERVER SIDE

5

User input

Interaction points: 1 – HTML to JS, 4 – JS to PHP, 7 – PHP to SQL

Figure 5.3 Example of a cross-language program slice

As explained in the introduction, program slicing for dynamic web code faces several

challenges: (1) Data needs to be transferred back and forth between the server and client

sides; control and data flows across different languages need to be taken into account when

computing a program slice. (2) Client-side program entities (e.g., HTML input fields and

JS variables) are often embedded in PHP string literals or computed via various string

operations. (3) The control and data dependencies for the embedded code might be

governed by the conditions in the server-side code (i.e., some of the dependencies are

conditional). For illustration, Figure 5.3 shows an example of a cross-language program

slice from the value ‘john’ of an HTML <input> element.

www.manaraa.com

48

Data flows
for PHP/SQL

Data flows
for HTML

Data flows
for JS

PHP page Parsing
Symbolic Execution

for Data-Flow Analysis
Connecting
Data Flows

Data flows
for HTML/JS

Analyzing
HTML

Output with
symbolic values

Computing
Slice

Slicing criterion C

Program slice
for C

Sym. Exec.
on JS

Connecting
Data Flows

Cross-language
cross-page data flows

Step 4

Conditional DOM
(VarDOM)

Step 3

Step 2Step 1

Figure 5.4 Overview of WebSlice

We propose WebSlice [102], an approach to compute program slices in a PHP web

application. WebSlice proceeds in four main steps: (1) performing symbolic execution

on the PHP code to approximate its output as well as constructing the data flows for

server-side code in PHP and SQL, (2) parsing and analyzing the output to construct the

data flows for client-side code in HTML and JS, (3) connecting the data flows across

different languages, and (4) computing a slice given a slicing criterion. Figure 5.4 gives

an overview of these steps.

Step 1—Symbolic execution for data-flow analysis. The goal is two-fold: (1)

to approximate the output of a PHP program so that the data flows within embedded

client code can be analyzed in later steps and (2) to construct the data flows within

the server-side code. For approximating the output, we reuse our symbolic-execution

engine [105]. Symbolic execution explores different paths in a PHP program and com-

putes/propagates the values of definitions and references of data entities. Conveniently,

this process allows us to track the data flows within the server-side code. Since we need

our symbolic execution engine anyway to approximate the output, we reuse and extend

it with new mechanisms to record the data flows within PHP as well as SQL code, which

is embedded in PHP strings and is also resolved by symbolic execution. In addition,

an advantage of using symbolic execution is that we can eliminate some infeasible flows

by checking the satisfiability of the path constraints under which the data entities appear.

www.manaraa.com

49

1 if ($_GET['user'] == 'admin')

2 $message = 'Welcome admin!';

3 else

4 $message = 'Access denied.';

5 if ($_GET['user'] == 'admin')

6 echo '<div class="msg−admin">' . $message . '</div>';

X

For example, in the code above, the PHP variable definition $message on line 4 does

not have a def-use relation with the reference on line 6 since they are under different

path constraints. Also, symbolic execution allows us to resolve dynamically included

PHP files, thereby detecting data flows that would otherwise be missed. For scalability,

we have made several approximations to our symbolic executor such as running at most

two iterations of a loop and skipping recursive function calls; we discussed them at the

end of Section 3.

Step 2—Embedded code analysis. Using the VarDOM representation of the

client code, we are able to analyze the embedded code written in HTML/JS and build

their respective data flows. Since HTML is a declarative language, we collect the defi-

nitions of HTML entities. For JS code, we compute its data flows using a light-weight

symbolic-execution engine with an algorithm to build data flows similar to that for PHP.

Step 3—Connecting data flows. Data flows can exist among data entities of

different languages and across different pages. Thus, we connect the data flows among

those entities based on cross-language def-use and information-flow relations (F3 and

F4 in Table 5.1). For instance, the input fields in the HTML form <form action =

‘EditAnnouncements.php’ ... > have cross-language def-use relations with the corresponding

PHP $_GET/$_POST variables on the page ‘EditAnnouncements.php’ since the inputs field

are submitted to that page. Through this step, we obtain the data flows for the entire

web application.

www.manaraa.com

50

Step 4—Computing slice. Once the data-flow graph is produced, we can use it

to quickly compute any program slice. Given a definition or a reference C, the slice for

C consists of the definitions and references that are reachable from C in the graph.

5.2.3 Data-Flow Analysis via Symbolic Execution

This section presents our algorithm to construct the data flows and to compute the

output and SQL queries of PHP code. The algorithm is built on top of our symbolic-

execution engine (see Section 3.2). To describe our technique, in addition to the existing

notation, we introduce L as the set of all definitions and references. To detect data flows,

the program state (V ,D, π) now includes a definition store D : N 7→ P(L × Π) that

maps each variable name to its set of definitions together with a path constraint under

which each definition appears.

In Figure 5.5, we formalize the key evaluation rules for our symbolic-execution engine

and highlight the parts that we extend to identify data-flow relations. The functions

addEntity and addRelation are used to create the nodes and edges of the data-flow

graph (the graph is a global data structure and is not shown in the program state).

5.2.3.1 Intraprocedural Data Flows (Rules 1–3)

During symbolic execution, we detect data flows by identifying def-use and information-

flow relations among data entities (F1 and F2 in Table 5.1). For def-use relations ,

since a reference could have multiple definitions (e.g., a PHP variable can be defined

in different branches and then later accessed after the branches), we need to keep track

of the set of definitions of each reference. Therefore, we maintain these sets via the

definition store D. When a reference r with name n is found under a path constraint

πr, we look up its definitions in the set D(n) and match πr with the constraints of those

definitions to retain only feasible relations. Specifically, a definition d with constraint πd

in D(n) has a feasible def-use relation with r if πd ∧ πr is satisfiable. (In other words,

www.manaraa.com

51

Initialization:

V(x) =⊥ D(x) = ∅ π = TRUE

1. Variable Access:

r = addEntity($n) addRelation(d, r), ∀(d, πd) ∈ D(n), isSat(πd ∧ π)

〈$n,V, D , π〉 → 〈V(n),V, D , π〉

2. Assignment:

〈e,V, D , π〉 → 〈v,V ′, D′ , π〉
d = addEntity($n) addRelation(r, d), ∀r ∈ vars(e) D′′ = D′[n 7→ {(d, π)}]

〈$n = e,V, D , π〉 → 〈v,V ′[n 7→ v], D′′ , π〉

3. If Statement:

〈e,V, D , π〉 → 〈v,V ′, D′ , π〉 π′ = whenEqual(v,TRUE) isSat(π ∧ π′) isSat(π ∧ ¬π′)
〈〈s1,V ′, D′ , π ∧ π′〉〉 → 〈〈c1,V1, D1 , π ∧ π′〉〉 〈〈s2,V ′, D′ , π ∧ ¬π′〉〉 → 〈〈c2,V2, D2 , π ∧ ¬π′〉〉

V3(x) = select(π′,V1(x),V2(x))

D3(x) = {(d, πd ∧ π′)|(d, πd) ∈ D1(x)}
⋃
{(d, πd ∧ ¬π′)|(d, πd) ∈ D2(x)}

〈〈if (e) s1 else s2,V, D , π〉〉 → 〈〈select(π′, c1, c2),V3, D3 , π〉〉

〈e,V, D , π〉 → 〈v,V ′, D′ , π〉 π′ = whenEqual(v,TRUE) ¬isSat(π ∧ ¬π′)
〈〈s1,V ′, D′ , π〉〉 → 〈〈c1,V1, D1 , π〉〉

〈〈if (e) s1 else s2,V, D , π〉〉 → 〈〈c1,V1, D1 , π〉〉

〈e,V, D , π〉 → 〈v,V ′, D′ , π〉 π′ = whenEqual(v,TRUE) ¬isSat(π ∧ π′)
〈〈s2,V ′, D′ , π〉〉 → 〈〈c2,V2, D2 , π〉〉

〈〈if (e) s1 else s2,V, D , π〉〉 → 〈〈c2,V2, D2 , π〉〉

4. Function Declaration:

λ is a pointer to function n($n1, ..., $nm){s}
〈〈function n($n1, ..., $nm){s},V, D , π〉〉 → 〈〈OK,V[n 7→ λ], D , π〉〉

5. Function Invocation:

λ = V0(n) λ is a pointer to function n($n1, ..., $nm){s}
〈ei,Vi−1, Di−1 , π〉 → 〈vi,Vi, Di , π〉, ∀i ∈ [1..m] Vf (x) =

{
vi if x = ni
⊥ otherwise

di = addEntity($ni), ∀i ∈ [1..m] Df (x) =
{

(di, π) if x = ni
∅ otherwise

addRelation(r, di), ∀r ∈ vars(ei) ∀i ∈ [1..m]

〈〈s,Vf , Df , π〉〉 → 〈〈c,Vf ′ , Df ′ , π〉〉
RETref = addEntity(n) addRelation(RETdef , RETref),∀(RETdef , πd) ∈ Df ′(‘RET’)

〈n(e1, ..., em),V0, D0 , π〉 → 〈Vf ′(‘RET’),Vm, Dm , π〉

Figure 5.5 Symbolic execution’s evaluation rules to detect data flows (extensions to
PhpSync in Section 3.2 are highlighted in gray)

www.manaraa.com

52

6. Return Statement:

〈e,V, D , π〉 → 〈v,V ′, D′ , π〉
RETdef = addEntity(e) addRelation(r,RETdef), ∀r ∈ vars(e)

D′′ = D′[‘RET’ 7→ {(RETdef , π)}]

〈〈return e,V, D , π〉〉 → 〈〈RETURN,V ′[‘RET’ 7→ v], D′′ , π〉〉

7. Block of Statements:

〈〈s1,V, D , π〉〉 → 〈〈c1,V1, D1 , π〉〉 π′ = whenEqual(c1,OK)

isSat(π ∧ π′) 〈〈s2,V1, D1 , π ∧ π′〉〉 → 〈〈c2,V2, D2 , π ∧ π′〉〉
V3(x) = select(π′,V2(x),V1(x))

D3(x) = {(d, πd ∧ π′)|(d, πd) ∈ D2(x)}
⋃
{(d, πd ∧ ¬π′)|(d, πd) ∈ D1(x)}

〈〈s1s2,V, D , π〉〉 → 〈〈select(π′, c2, c1),V3, D3 , π〉〉

8. While Statement:

〈〈if (e) {s if (e) s },V, D , π〉〉 → 〈〈c,V ′, D′ , π〉〉

〈〈while (e) s,V, D , π〉〉 → 〈〈c,V ′, D′ , π〉〉

9–11. Rules 9–11 are similar to those in Figure 3.3.

12. mysql_query:

〈e,V,D, π〉 → 〈query,V ′,D′, π〉

〈msql_query(e),V,D, π〉 → 〈parseAndFindSqlDefs(query),V ′,D′, π〉

13. mysql_fetch_array:

〈e,V,D, π〉 → 〈v,V ′,D′, π〉

〈msql_fetch_array(e),V,D, π〉 → 〈v,V ′,D′, π〉

14. Array Access of SQL Data:

〈e1,V, D , π〉 → 〈v1,V1, D1 , π〉 〈e2,V1, D1 , π〉 → 〈v2,V2, D2 , π〉
v1 is a set of SQL definitions d ∈ v1 d has name/index v2

r = addEntity(e1[e2]) addRelation(d, r)

〈e1[e2],V, D , π〉 → 〈symbolic(e1[e2]),V2, D2 , π〉

Notation and auxiliary functions (in addition to those in Figure 3.3):
- vars(e) returns a set of references appearing in an expression e (except for arguments of user-defined
function calls).
- parseAndFindSqlDefs(query) parses an SQL query and returns a set of SQL definitions (SQL table
columns) in the query.
- addEntity(e) creates and returns a new definition/reference from e.
- addRelation(l1, l2) records a def-use/info-flow between l1 and l2.

Figure 5.5 (Continued)

Symbolic execution’s evaluation rules to detect data flows (extensions to PhpSync in
Section 3.2 are highlighted in gray)

www.manaraa.com

53

there exists at least one execution path where both d and r appear), as shown in rule 1

of Figure 5.5).

To identify information-flow relations , at a variable assignment, we record the

information flow from the variables on the right-hand side to the one defined on the

left-hand side (rule 2). Note that if the right-hand side of an assignment contains a user-

defined function call, the arguments in the function call do not have direct information-

flow relations with the defined variable; we detect their relations through interprocedural

data flows instead (Section 5.2.3.2). We also update the definition store D with the new

definition of the variable. If a variable is redefined through sequential statements, we

overwrite its previous definitions with the new definition since values from the previous

definitions can no longer be accessed. If a variable is defined/redefined in branches of a

conditional statement, we keep the values/definitions of the variable independent in the

branches but combine them after executing all branches. We describe the details next.

$message = ;
 (message) = {(Line 1, TRUE)}

 (message) = {(Line 1, TRUE)}

 (message) = {(Line 3, μ)}

 (message) = {(Line 5, ¬μ)}

 (message) = {(Line 3, μ), (Line 5,¬μ)}

 (message) = {(Line 1, TRUE)}

μ: $_GET[user] == admin

if ($_GET[user] == admin) {

 $message = Welcome admin! ;

} else {

 $message = Access denied. ;

}

if ($_GET[user] == admin)

1

2

3

4

5

6

7

8
 (message) = {(Line 3, μ), (Line 5,¬μ)}

X

 echo $message ;

Figure 5.6 Detecting data flows at conditional statements

Handling conditional statements (rule 3). If the path constraints of both

branches of an if statement are satisfiable, we explore both branches. Similarly to the

value store V , modifications to the definition store D take effect in the corresponding

branch only. After executing the branches, we update the definition store with the com-

www.manaraa.com

54

bined definitions from the two branches together with their corresponding constraints.

Note that if the path constraint of one of the branches is unsatisfiable, we execute the

other (satisfiable) branch only. As an illustration, in Figure 5.6, the variable $message

after line 6 has two definitions from both branches. When the variable is accessed under

constraint µ on line 8, we compare its constraint with the constraints of the definitions

in D to eliminate an infeasible relation with the definition on line 5.

5.2.3.2 Interprocedural Data Flows (Rules 4–6)

function createDiv ($content, $inline) {

 if ($inline)

 return '' . $content . '';

 else

 return '<div>' . $content . '</div>';

}

$welcome = 'Welcome to my page.';

$div1 = createDiv ($welcome, false);

$login = 'Please log in.';

$div2 = createDiv($login, true);

$html = $div1 . $div2;

L5: RETdef

L8: RETref

Def-use

Info-flow

1

2

3

4

5

6

7

8

9

10

11

L8: $div1

L11: $div1 L11: $div2

L10: $div2

L10: RETref

L5: $content

L1: $content

L8: $welcome

L7: $welcome L9: $login

L10: $login

L3: RETdef

L3: $content

L1: $content

L11: $html

Figure 5.7 Interprocedural flows (RET nodes are highlighted)

Our extended algorithm instruments the function invocation process and tracks the

data flows. We create a definition for each formal parameter and record the data flows

from the arguments of the function call to the parameter definitions in the function

declaration. To track the data flows from the function to its call site, we create two

special RET nodes: a RETdef node representing the return value computed inside the

function and a RETref node representing the propagated return value at the call site.

www.manaraa.com

55

Note that if a function is invoked multiple times, we create separate entities, RET

nodes, and data flows corresponding to each function invocation (for each invocation,

the execution path in the function body could be different depending on the specific

input arguments). Since we create different contexts at function calls, the approach does

not suffer from the calling-context problem [138], caused by analyzing different function

calls in the same context, which would result in infeasible interprocedural data flows.

To illustrate, Figure 5.7 (right-hand side) shows the interprocedual data flows for the

PHP variable $welcome (line 7) and $login (line 9). In the code, we show the data flow

for $welcome only; the data flow for $login is similar. Note that one code location may

correspond to several nodes in different contexts (e.g., the two nodes labeled L1: $content)

since the createDiv function is executed twice. The details are shown in rules 4–6.

5.2.3.3 Handling Special Statements (Rules 7–8)

Handling a block of statements (rule 7). After executing the block, in addition

to the value store, we also update the definition store in a similar manner.

Handling loops (rule 8). For a loop, our goal is to detect data flows across

different iterations. For instance, in the code snippet below, there is a def-use relation

from the variable $y on line 3 to the variable $y on line 2 if the loop can be executed

multiple times.

1 while ($row = mysql_fetch_array($result)) {

2 $x = $y + 1;

3 $y = $x ∗ 2;

4 }

Therefore, to detect such data flows, we execute the body of a loop at most twice by

modeling the loop as two nested if statements and applying the rule for if.

www.manaraa.com

56

Handling aliasing and objects (rule not shown). When a PHP object is

created, we maintain two maps from the object’s fields to their values and definitions

(similar to the stores V and D). Therefore, even if an object field is written and read via

different variables (through aliasing), our algorithm can still recognize a def-use relation

between the definition and reference, as illustrated below. (The same mechanism is used

to handle assignment/call by reference.)

1 $x = new Foo(); $x−>a = 1; $y = $x;

2 echo $y−>a;

5.2.3.4 Data Flows between PHP and SQL (Rules 12–14)

In a web application, to retrieve data from a database, one can construct an SQL

query and invoke PHP functions for database queries such as mysql_query. The returned

data is stored in a record set with rows and columns. To iterate through each row in the

record set, a PHP function such as mysql_fetch_array can be used. To access each column

in a row, one can access the corresponding column name/index of the array containing

the row. Since such an array access in PHP retrieves data originating from a database,

we consider it as a data flow (def-use relation) from SQL to PHP. In that def-use relation,

we consider the SQL table column name in the SQL query as an SQL definition and the

corresponding array access as a PHP reference to an SQL entity.

To detect such data flows, during symbolic execution, we input the value of an

SQL SELECT query, which could also contain symbolic/conditional characters, into our

variability-aware SQL parser (similar to the HTML parser in Section 4.2) to recognize

table column names as SQL definitions (function parseAndFindSqlDefs in rule 12 of

Figure 5.5). This set of SQL definitions is propagated through mysql_fetch_array function

calls (rule 13). When there is an array access to such SQL data, we detect a relation

between them (rule 14). In this work, we detect data flows from SQL to PHP; we

www.manaraa.com

57

plan to apply similar ideas for data flows within SQL and from PHP to SQL (via SQL

INSERT/UPDATE statements).

5.2.3.5 Traditional vs. Thin Slicing

We compute a thin slice by including all reachable nodes from a given node in the

data-flow graph. However, we could easily record control dependencies for traditional

slicing as follows. At an if statement (rule 3), we could additionally record the control de-

pendencies between references on the if condition and the definitions within its branches

and extend our graph to have both control and data dependencies on entities (similar to

a PDG on statements). We can then reduce program slicing to a reachability problem

on this graph.

5.2.4 Embedded Code Analysis

We parse the symbolic output of a PHP program with our HTML and JS variability-

aware parsers [101] into a VarDOM representation of the client-side code (Figure 4.1).

We then analyze the VarDOM to collect data entities and construct data flows for the

embedded code.

Analyzing HTML. Since HTML is a declarative language, we detect the definitions

of HTML entities by traversing the VarDOM tree and identifying the following types:

(1) HTML definitions by name: These entities are identified by the ‘name’ attribute

of an HTML element (e.g., <form name=‘form1 ’>).

(2) HTML definitions by ID: These entities are identified by the ‘id’ attribute of an

HTML element (e.g., <div id=‘id1 ’>).

(3) HTML definitions by URL parameters: These entities are detected in HTML

query strings (e.g., the data entity lang in).

Building data flows for JS. To construct data flows for JS, we first extract JS

code from JS locations on the VarDOM. These locations include HTML <script> tags

www.manaraa.com

58

and HTML event handlers (e.g., onload, onclick). The VarDOM already contains the

parsed JS ASTs for these code fragments [101], each of which serves as an entry point.

We then use a light-weight symbolic-execution engine for JS that is similar to the one

for PHP (by adapting the rules in Figure 5.5 for JS), run it for every entry point and

detect data flows. Currently, we do not handle client code that is dynamically generated

from JS code such as document.write or eval, and data flows involving AJAX.

5.2.5 Cross-language Data Flows

SQL

PHP

CLIENT SIDESERVER SIDE

Cross-lang.
def-use

Cross-lang.
info-flow

HTML

JavaScript

Cross-lang.
def-use

Cross-lang.
info-flow

Cross-lang.
def-use

Cross-lang.
info-flow

Figure 5.8 Data-flow relations across different languages

Data flows can exist among entities of different languages (F3 and F4 in Table 5.1). In

Figure 5.8, we show all possible def-use and information-flow relations across languages.

We detect those cross-language flows as follows.

F3—Cross-language def-use relations. Table 5.2 shows the types of cross-

language def-use relations in a web application.

(1) Between HTML/JS and PHP (rows 1–3): A PHP program can access data sent

from a client page via PHP $_POST/$_GET or $_REQUEST arrays (corresponding to

HTTP POST/GET protocols or both). These arrays hold key/value pairs, where the

keys are the names of the HTML input fields. Therefore, we identify those array accesses

as PHP references to client-side entities. Note that the submitted destination of the

www.manaraa.com

59

Table 5.2 Types of cross-language def-use relations

Ref. Definition Reference example Definition example

1 PHP HTML input $_GET[‘input1’] <input name=‘input1’ value=‘0’...>
2 PHP HTML URL $_GET[‘input1’]
3 PHP JS $_GET[‘input1’] document.form1.input1.value=‘0’
4 PHP SQL $row[‘column1’] SELECT column1 FROM table1

JS HTML by name:
5 JS - form document.form1 <form name=‘form1’...>
6 JS - input doc...form1.input1 <input name=‘input1’...>
7 JS - input value doc...input1.value <input name=‘input1’ value=‘0’>
8 JS HTML by ID document. <div id=‘id1’>

getEle...ById(‘id1’)

client-side entities (specified by the ‘action’ attribute of an HTML form or the address

part in a URL) must match the PHP page containing the PHP reference.

(2) Between SQL and PHP (row 4): As described in Section 5.2.3.4, we detect these

relations during our symbolic execution on PHP.

(3) Between HTML and JS (rows 5–8): In the client code, JS can operate on HTML

elements via the HTML DOM. For example, the JS expression document.form1.input1.value

retrieves the value of an HTML input field named ‘input1’ in a form named ‘form1’.

We identify these JS expressions as JS references to HTML entities. However, if they

appear on the left-hand side of an assignment, we consider them as JS definitions of

HTML entities instead since they redefine the values of the corresponding HTML entities.

Similar to detecting data flows in PHP, we also check the path constraints under which

these client-side entities are generated to eliminate infeasible data flows among them.

F4—Cross-language information-flow relation. During symbolic execution on

PHP or JS, we track any generated string value (or symbolic value) to the variable or

expression that generates it. If the value is used in an information-flow relation in the

generated code, we recognize it as a cross-language information-flow relation from the

generating language.

www.manaraa.com

60

We apply the above process for a (predefined) set of page entries (PHP files that can

be requested by a web browser) to build the data flows within individual pages (the data

flows for a page can involve multiple files). To detect data flows across page entries, we

detect types 1–3 in Table 5.2. (The other types in Table 5.2 are applicable for within-

page relations only.) Data flows via cookies and sessions are currently not supported.

Note that the resulting data-flow graph may contain identical clusters of nodes where

there are no edges across those clusters and the clusters all correspond to the same code

locations in the server-side program (since the same code might be executed multiple

times); in such cases, we retain only one cluster and discard the others.

Calling-context problem with inter-page data flows. When a client page

submits data to the server side, the corresponding server-side program is invoked to

handle the request. Conceptually, this process is similar to invoking a function call

from the client page in which the arguments to the function call are the client’s data.

Although we could handle the invocation of pages similarly to function calls, in our

current implementation, we do not execute a page entry multiple times. Thus, the

calling-context problem may occur for inter-page data flows, resulting in some infeasible

data flows. However, our test results on a real-world system indicated that this problem

does not cause significant imprecision.

5.3 Output-Oriented Testing

5.3.1 Motivation

In software development, different testers have different focuses and priorities. Test-

ing may focus on functional correctness, but also on performance, security, usability,

accessibility, layout quality, and other quality attributes. Whereas code-level testing

is well supported by tools and coverage metrics, we argue that testers inspecting the

output of a program are much less supported, even though the output is the main prod-

www.manaraa.com

61

uct of many software systems, including dynamic web applications. For example, for a

UI tester tasked with checking a web application for layout issues or proof reading all

texts, we cannot offer ‘coverage’ measures that would be available for a traditional soft-

ware tester. For such testers, code measures such as line or branch coverage represent a

wrong abstraction, refer to artifacts not directly related to the testing tasks and possibly

unknown to the tester, and incentivize testing priorities inefficiently as we will show.

Instead, we propose coverage measures for the program’s output, to support, what we

call, output-oriented testing.

(a) Example PHP program

1 echo "<h2>Online Shopping</h2>";
2 if (isAdmin()) logAdminAccess();
3 if (isLoggedIn())
4 echo "<div>Welcome " . $user . "!</div>";
5 else
6 echo "<div>Please log in first.</div>";
7 echo "Copyright 2015";

(b) Output of a test

(c) Output coverage visualization

Figure 5.9 An example web application and illustration of output coverage

www.manaraa.com

62

For testers that focus primarily on the output of an application (UI testers and many

others), we propose coverage metrics on the output of an application, which indicate

how much of the possible output has been produced by a set of tests and what output

is still uncovered. Output coverage metrics measure coverage in terms of the output,

not in terms of the code that produces the output, because code that does not produce

any output is irrelevant to a UI tester. For example, to inspect all possible outputs of

our example program in Figure 5.9a for layout issues, a UI tester would not care about

the implementation logic beyond understanding which different pages can be produced

and would not care about whether admin access is logged (line 2). The UI tester would

care about seeing all text in context to investigate different parts of the output and the

consistency among those parts, for example, ensuring that font sizes are consistent in all

outputs. With an output coverage metric, a tester can identify missing parts of the output

and can prioritize tests to cover the largest parts of the output (not most statements of

the implementation) first.

5.3.2 Output Coverage Metrics

5.3.2.1 Representing the Output Universe

A key step in determining output coverage is to compute the output universe, that is,

the set of all possible outputs from a web application. Unlike traditional code coverage

metrics, such as statement coverage or branch coverage, where the set of all statements

and branches in a program is well defined and finite, the set of all possible outputs is

usually infinite due to unknown data coming from user inputs and databases. Such un-

known data can lead to different outputs with the same structure (e.g., only the user’s

name changes while the layout of the web page and the welcome message remain the

same), or different outputs with different structures (e.g., a different set of functionality

is presented depending on whether the user has the administrator role). To address this

challenge, we reuse our existing tree-based approximation of all possible outputs, called

www.manaraa.com

63

D-Model (see Section 3.1). The key idea in our approximation is that we abstract un-

known data as symbolic values. When string values are produced under specific path

constraints (depending on one or more symbolic values), we keep all alternatives and

their associated constraints. In this way, the D-Model approximates all possible struc-

tures of the output with all statically determinable content, leaving symbolic values as

‘placeholders’ for unresolved data.

To illustrate our representation of all possible outputs, let us consider a slightly

extended version of our initial example. As shown in Figure 5.10a, we include a second

decision about displaying coupons. In Figure 5.10b, we show our corresponding output

universe representation with Greek letters for symbolic values and #if directives for

alternatives depending on a path constraint. Note that we maintain for each character

in the output universe its origin location in the server-side program obtained via our

symbolic execution (not shown).

5.3.2.2 Family of Output Coverage Metrics

Just as a family of coverage metrics such as statement, branch, and path coverage has

been defined on code [97, 10], we propose a family of coverage metrics that are applied to

the output of a web program. We define output coverage for a given test suite as follows:

Coverage of string literals. Coverage for string literals (Covstr) is similar to

statement coverage in that we measure how much of the content contained in string

literals in the program (that are relevant for the output universe) have been produced in

at least one test case. The rationale for this type of coverage is that a string that could

appear in the output needs to be tested in a concrete output generated by at least one test

case. Note that not all string literals in the PHP program contribute to the output: For

example, the literal “user” in our example is an array access but not part of the output

universe and as such not measured by this metric. To measure the coverage for strings,

we compute their covered length, or equivalently, the number of covered characters:

www.manaraa.com

64

(a) A PHP program (extended from Figure 5.9) to illustrate different
output coverage metrics

1 echo "<h2>Online Shopping</h2>";
2 if (isAdmin($_GET["user"]))
3 logAdminAccess();
4 if (isLoggedIn($_GET["user"]))
5 $message = "<div>Welcome " . $_GET["user"] . "!</div>";
6 else
7 $message = "<div>Please log in first.</div>";
8 echo $message;
9 if ($showCoupons)
10 echo "<div>Coupons are available!</div>";
11 echo "<div>Copyright 2015</div>";

(b) Representation of the output universe with CPP #if directives
and symbolic values in Greek letters; origin locations of strings
literals in server code are shown in italics

1 <h2>Online Shopping</h2> L1
2 #if α // isLoggedIn($_GET['user']) L4
3 <div>Welcome β!</div> // β represents $_GET['user'] L5
4 #else
5 <div>Please log in first .</div> L7
6 #endif
7 #if γ // $showCoupons L9
8 <div>Coupons are available!</div> L10
9 #endif
10 <div>Copyright 2015</div> L11

(c) A concrete output of a test case in which the user (Alice) is logged
in as administrator and the $showCoupons option is enabled

1 <h2>Online Shopping</h2>
2 <div>Welcome Alice!</div>
3 <div>Coupons are available!</div>
4 <div>Copyright 2015</div>

(d) The S-Model for a concrete output

Alice

<h2>Online
Shopping</h2>

!</div>
<div>Coupons are
available!</div>

<div>Copyright
2015</div>

CONCAT

<div>Welcome

CONCAT

L1, Fig. 5.10a

L5, Fig. 5.10a $_GET[user] L5, Fig.
5.10a

L10, Fig. 5.10a

L11, Fig. 5.10a

L5, Fig. 5.10a

Literal NonLiteralCONCATLegends:

Figure 5.10 An example PHP program, its output universe representation, and S-Model

www.manaraa.com

65

Definition 2 (Covstr) The ratio between the number of characters in string literals in

the output universe that are covered by the test suite and the total number of all characters

in the output universe.

We define Covstr based on the lengths of the literals, rather than the number of literals

because a web application often has long literals containing large portions of HTML/JS

code. Counting characters aligns better with the chance of bugs since long literals are

more likely to contain bugs than short ones.

Compared to a simpler approach of investigating all string literals in a program

individually, testing with output coverage ensures that each literal is produced in the

context of at least one full page. Such context allows to investigate presentation issues

depending on context as font sizes, colors, surrounding texts, or ordering that cross

multiple string literals. For example, a tester may want to assure that all <div> tags

are correctly nested, which is difficult to assess from looking only at individual string

literals. Analogous to statement coverage, to achieve Covstr coverage each literal has to

appear only in a single context, not in all possible contexts.

Coverage of output decisions. In addition to covering all string literals, testers

might also want to investigate the composition of the page when certain parts are not

displayed based on some decision. For instance, they might want to check that the layout

of the web page is still correct without the coupon output. We consider every control-

flow decision in the program that affects the output as an output decision. A control-flow

decision that does not produce output in either branch is not considered as an output

decision. We define coverage on output decisions (Covdec) analogous to branch coverage

on code:

Definition 3 (Covdec) The ratio between the number of output decisions covered by the

test suite and the total number of all output decisions in the output universe.

www.manaraa.com

66

Coverage of contexts. The previous measures consider only some contexts in

which string literals may appear (i.e., at least one context for each string literal or

output decision), while certain bugs in the output may appear in some contexts and not

others. (Each context is a specific combination of output decisions, which can be listed

by traversing the output decisions on the output universe.) Therefore, we also consider

all possible contexts and define a corresponding output-coverage metric Covctx analogous

to path coverage on code:

Definition 4 (Covctx) The ratio between the number of combinations of output deci-

sions covered by the test suite and the total number of all possible combinations of output

decisions in the output universe.

Table 5.3 Output coverage and code coverage for the example in Figure 5.10

Output coverage Code coverage

Covstr 111 / 142 (78.1%) Statement cov. 9 / 10 (90%)
Covdec 2 / 4 (50%) Branch cov. 3 / 6 (50%)
Covctx 1 / 4 (25%) Path cov. 1 / 8 (12.5%)

In our example, there are three control-flow decisions (if statements) of which two

affect the output; these two output decisions can be combined to provide four different

contexts (in contrast to eight paths). As with path coverage, the number of contexts

grows very quickly, such that achieving full Covctx coverage is typically not a realistic

goal. In Table 5.3, we show output coverage metrics and their code coverage counterparts

for a single test case on our example.

Relations with code coverage metrics. Our three output coverage metrics are

inspired by but do not necessarily correlate with statement coverage, branch coverage,

and path coverage, respectively. Specifically, not all statements and decisions in a web

application contribute to the output (e.g., the logging functionality in our example), and

single statement can produce output for multiple string literals (e.g, the echo statement

www.manaraa.com

67

on line 8 of Figure 5.10a generates the two alternatives on lines 2–6 in Figure 5.10b). Our

output coverage metrics provide a tailored view on the test suite of a web application

for testers who are focused on the output.

5.3.3 Computing Output Coverage

PHP page
(Fig. 5.10a)

Symbolic Execution
to Approx. Output

Approximated
output universe

(Fig. 5.10b)

Test
cases

Dynamic
Instrumentation

Concrete
outputs

(Fig. 5.10c, 5.10d)

Mapping

Output
coverage
metrics
(Table 5.3)

Figure 5.11 Computing output coverage

Key Idea. We compute output coverage metrics in three steps illustrated in Fig-

ure 5.11. First, we use our symbolic execution engine for PHP [105] to approximate the

output universe of a PHP web application. Throughout symbolic execution, we track

origin information for every character in the output. Second, we instrument a regular

PHP interpreter to record the execution of a test case and the generation of its output.

We again track origin information about every character in string values (either to string

literals or to outside sources as user input). Third, we match concrete outputs from

test executions on the output universe to measure coverage. The location information

produced as part of every test execution is used to avoid ambiguity in identifying parts

in the output universe that have been covered by the test suite. Since the number of

string literals, output decisions, and contexts in the output universe representation is

finite, we can compute the three coverage metrics as percentages.

Information about our symbolic execution technique has been explained in Section 3;

next, we explain steps 2 and 3 in more detail.

www.manaraa.com

68

5.3.3.1 Dynamic Instrumentation of Test Cases

To enable more precise mapping of test outputs on the output universe, we track

origin information of string values that are output by concrete test executions. (Origin

information is used for distinguishing string literals that have the same value but are

produced from different locations in the server-side program.) String values in PHP are

either introduced in literals or read from variables or functions that represent environment

values, database results, or user input (e.g., $_GET[‘user’]). Once created, we track origin

information also through assignments, concatenation, and function calls until it is finally

used as part of an echo or print statement (or inline HTML) to produce output.

We track origin information by attaching location information to string values. Tech-

nically, we attach a tree-based representation for string values called S-Model (short for

‘string model’). An S-Model may contain three kinds of nodes: Literal and NonLiteral nodes

with origin information and Concat containing nested S-Model nodes. In Figure 5.10d,

we illustrate the S-Model corresponding to the output of Figure 5.10c of our running

example (for clarity, we show only line-level location information).

We compute origin information with an instrumented PHP interpreter, based on

the open-source interpreter Quercus [118]. We track the attached S-Model information

during the evaluation of the test as shown in Figure 5.12. Specifically, we handle three

kinds of expressions:

1. For a PHP literal expression (lines 2–6), we attach a new Literal node to the string

value, pointing to the expression node with its location information.

2. For a PHP concatenation expression (lines 9-15), we create a Concat node to repre-

sent the returned string value with its children being the corresponding S-Models

of the constituent sub-strings.

3. For all other PHP expressions, such as a PHP variables or a function calls (lines 18-

22), we reuse the original interpreter’s code to evaluate the expression and obtain

www.manaraa.com

69

1 // Evaluating a Literal Expression
2 function Value eval(LiteralExpr literalExpr)
3 value ← evalLiteral(literalExpr)
4 value.SModel ← new Literal(literalExpr)
5 return value
6 end
7
8 // Evaluating a Concat Expression
9 function Value eval(ConcatExpr concatExpr)
10 leftValue ← eval(concatExpr.LeftExpr)
11 rightValue ← eval(concatExpr.RightExpr)
12 value ← evalConcat(leftValue, rightValue)
13 value.SModel ← new Concat(leftValue.SModel, rightValue.SModel)
14 return value
15 end
16
17 // Evaluating a Non−Literal Expression
18 function Value eval(NonLiteralExpr nonLiteralExpr)
19 value ← evalNonLiteral(nonLiteralExpr)
20 if value.SModel is not set
21 value.SModel ← new NonLiteralNode(nonLiteralExpr)
22 end

Figure 5.12 Algorithm to create S-Model (added instrumentation is in italics)

its value (line 19). We attach a NonLiteral node referring to the corresponding

non-literal expression that creates the value.

The output of the test is collected as a single large S-Model from echo and print

statements, collecting all individual string outputs with Concat nodes.

5.3.3.2 Mapping Outputs to Output Universe

To compute output coverage, we identify which string literals/characters in the output

have been covered by outputs generated in a test case. We map Literal nodes of the S-

Model for test executions against the output universe to identify covered string literals

and output decisions. An S-Model can be considered as a sequence of string literals (with

location information), whereas the output universe can be considered as a sequence of

string literals and symbolic values, with some parts being alternatives to one another.

www.manaraa.com

70

In most cases, the mapping is straightforward because we simply can match string

literals by location information. Matching is more difficult when concrete values of an

execution are matched against symbolic values in the output universe, since there might

be multiple possible matches. In addition, location information is not always available—

there are cases where we might lose location information during processing when strings

are processed through library functions. Therefore, for those cases where location infor-

mation is not available or not sufficient, we use heuristic strategies to determine the best

mapping among possible alternatives.

To illustrate our mapping challenge for cases involving symbolic values, consider

mapping a string value “Welcome guest” with the following output universe. The string

could be matched against either “Welcome β” assuming that α is TRUE or the literals

“Welcome guest” if α is FALSE:

1 Welcome

2 #if α

3 β // $_GET['user']

4 #else

5 guest

6 #endif

To perform mapping in those cases, we use the following heuristic strategies:

• Pivot mapping: We first identify pivots—the string literals in the S-Model that

can be mapped exactly to the string literals in the output universe. The remaining

unmapped string literals will correspond to symbolic values or parts with alterna-

tives. For instance, in the above example, we first map the string “Welcome” to

the corresponding string on the output universe. The unmapped string “guest” will

then be matched against the #if block in the output universe.

www.manaraa.com

71

• Best local mapping: To identify which one of the alternatives should be mapped

to a given string value, we recursively map the string value with each alternative

and select the one with the best mapping result (the highest number of mapped

characters). Note that we perform the mapping locally for (possibly nested) alter-

natives after pivots are identified in the previous step; we do not consider globally

optimal mapping of alternatives. In this example, the string “guest” will be matched

with both values in the true branch (β) and false branch (“guest”) of the #if block

for comparison.

• Location mapping: Since mapping can be ambiguous without location informa-

tion (e.g., the string value “guest” can be mapped to either the symbolic value β or

the string literal “guest"), we use the location information provided by the S-Model

of a string value to compare with the location of a string value or symbolic value

in the output universe to select a correct mapping. In this example, considering

the location, the string “guest” can be mapped to only one of the two branches.

For our running example (with its output universe and S-Model shown previously

in Figures 5.10b and 5.10d), our mapping algorithm proceeds as follows: First, the

strings “<h2>Online Shopping</h2>” and “<div>Copyright..." are mapped with the

corresponding strings on the output universe. The remaining strings are first mapped

to the first #if block. In the true branch, the strings “<div>Welcome" and “!</div>" are

mapped with the corresponding strings while “Alice" is mapped to the symbolic value

β (representing $_GET[‘user’]). In the false branch, the strings cannot be mapped to

“<div>Please log in first</div>”. Therefore, we select the mapping in the true branch.

Finally, the string “<div>Coupons are available!</div>” is matched to the second #if block;

it is then mapped to the string in the true branch (the false branch is empty).

Discussion. Since our output mapping algorithm works heuristically, it is impor-

tant that there are sufficient pivots to guarantee that the local best mappings are correct.

www.manaraa.com

72

As there are often large chunks of texts that remain unchanged across different execu-

tions, these pivots makes our mapping algorithm fast and highly precise. Note that our

output mapping algorithm is extended from the CSMap algorithm described in our prior

work [105]. While CSMap maps the output universe with a string in the output (without

location information), our extended algorithm maps the output universe with an S-Model

of a string value with its location information to avoid any ambiguous mappings.

www.manaraa.com

73

CHAPTER 6. DEVELOPING DYNAMIC WEB

DEVELOPMENT SUPPORT AND IDE SERVICES

Based on our program analysis infrastructure, we develop various types of support

for dynamic web development activities such as IDE services, fault localization, bug

detection, and testing.

6.1 IDE Services for Embedded Client Code

Figure 6.1 IDE services for embedded client code in dynamic web applications

In software development, IDE services such as syntax highlighting, code completion,

and “jump to declaration” are used to assist developers in programming tasks. In dy-

namic web applications, however, since the client-side code is dynamically generated

from the server-side code and is embedded in the server-side program as string literals,

providing IDE services for such embedded code is challenging. In this work, we intro-

www.manaraa.com

74

Figure 6.2 The VarDOM view and syntax highlighting support

duce Varis [101, 103] and BabelRef [106], the two tools that provide editor services on

the client-side code of a PHP-based web application, while it is still embedded within

server-side code. We implement various types of IDE services for embedded client code

including syntax highlighting, code completion, “jump to declaration”, and refactoring

(see a screenshot in Figure 6.1).

6.1.1 The VarDOM View

When a PHP program is loaded and the Varis tool is enabled, Varis analyzes the

PHP program and displays its VarDOM tree in an Eclipse tree view (the lower half

in Figure 6.2). Each HTML element is displayed with its textual content, type, and

location in the PHP code. Condition nodes in the VarDOM are annotated with an

arrow. When the user selects an HTML element in the VarDOM view, its corresponding

text in the source code will be highlighted. For instance, the highlighted HTML element

in Figure 6.2 shows that it is located on line 7 of the PHP file and the label of its parent

condition node shows that the element is generated when $ajax evaluates to TRUE.

www.manaraa.com

75

Figure 6.3 Code completion support

6.1.2 Syntax Highlighting

With the type and location information of HTML elements in the VarDOM, Varis

is able to highlight syntactic elements in the embedded client code. For instance, the

HTML opening tag, the HTML attribute name, and HTML attribute values are colored

differently on line 4 of Figure 6.2. Note that even though the HTML tag at line 4 is

split into three fragments in the server code with some unknown data ($_GET[‘method’]),

Varis is still able to highlight the code elements correctly.

6.1.3 Code Completion

When the user points to a position inside a PHP string and invokes code completion

support, Varis recognizes the code element of the embedded code at that location and

provides a list of code recommendations for the code element as if it was written on

static client code (without being embedded in a string). As an illustration, in Figure 6.3,

since the user requests code completion support at a position after the HTML input tag

name, Varis recommends attribute names that an HTML input can have. We use W3C

standards on HTML elements and their attributes for embedded HTML code completion.

www.manaraa.com

76

6.1.4 Jump to Declaration

Figure 6.4 “Jump to declaration” support

Based on the underlying call graph created from the VarDOM, Varis allows a user to

navigate between sources and targets in calling relationships: from JS function calls to

their declarations, from opening to closing HTML tags, and from CSS rules to selected

HTML elements. In Figure 6.4, when the user selects the JS function call update, a

context menu appears allowing the user to use the “Jump to Declaration” functionality,

which would take the user to the function declaration on line 18. Note that although

another function declaration with the same name exists on line 22, Varis is able to

pinpoint correctly the target by matching conditions between the function call site and

its declarations. If one source has multiple targets, Varis will show the condition of the

jump and allow a user to select the conditional navigation. For example, Varis will show

the AJAX option and allow the user to choose the navigation from the opening <script>

tag at line 14 of Figure 3.1 to its respective closing tag at either line 18 or 22.

www.manaraa.com

77

6.1.5 Refactoring

The refactoring support, given by the BabelRef tool, provides two key features: de-

tecting and displaying cross-language program entities/references and renaming those

entities/references on request.

6.1.5.1 Entity Detection

Figure 6.5 BabelRef’s entity view

Figure 6.5 shows BabelRef’s entity view with an entity list and a reference list. The

entity list displays all the cross-language program entities in the currently-edited PHP

file. When an entity is selected, the reference list gives the location information of all the

references to that entity, including the source files, line numbers, and offset positions.

For example, the PHP file in Figure 6.5 contains four entities, three of which are HTML

www.manaraa.com

78

entities and the other is a JS function. The HTML entity username has five references

located in two different PHP source files. As a user selects an entity in the editor window,

all of its references in the file will be highlighted.

6.1.5.2 Entity Renaming

Figure 6.6 BabelRef’s entity renaming: selecting an entity to rename

Figure 6.7 BabelRef’s entity renaming: previewing changes

www.manaraa.com

79

Based on the identified reference locations of the entities, BabelRef provides auto-

matic renaming support on those entities. When the user right-clicks on an entity in

the Eclipse editor, the BabelRef Rename command appears in the context menu allowing

the user to rename the entity (Figure 6.6). The user can then enter a new name for the

entity and preview the changes before applying the renaming operation (Figure 6.7).

After a renaming operation or whenever the user edits the source code, BabelRef

automatically re-executes the PHP program symbolically, re-detects the entities in the

background, and updates the entity and reference lists on the fly. In our experiments

on several real-world web applications of size up to 50 KLOC, BabelRef normally took

less than 40 seconds to perform symbolic execution and detect entities for a new system

(with up to 300 entities and more than 2,000 references), and it took less than one second

to re-detect entities and display the updated results when the source code changed.

6.1.5.3 Case Studies

a) References of alreadyFocused in JS code

b) References of alreadyFocused in HTML code

Figure 6.8 Cross-language entities/references in SquirrelMail-1.4.22

www.manaraa.com

80

In SquirrelMail-1.4.22, alreadyFocused is a JS variable declared and used inside the JS

code that is embedded in the PHP string $header (Figure 6.8a). The string value of

$header will then be output to the client page. On the client page, there also exist two

HTML elements produced by the PHP functions addInput and addPwField (Figure 6.8b).

Using symbolic execution, BabelRef can construct the HTML code of these elements and

detects that inside the event handlers for onfocus, the JS variable is accessed. Therefore,

BabelRef recognizes all the four references of alreadyFocused.

Figure 6.9 Entities with the same name in SchoolMate-1.5.4

In SchoolMate-1.5.4, there are two entities with the same name addstudent, one is an

HTML form and the other is an HTML input field (Figure 6.9). If the user is interested

in one of the entities only, BabelRef can help in identifying all the references belonging

to the chosen entity. Thus, the user does not have to filter the results returned by a text

search for the string “addstudent” to eliminate irrelevant references.

www.manaraa.com

81

Figure 6.10 Entities with scattered references in SchoolMate-1.5.4

Also, entities may have references located at various locations. As can be seen in

Figure 6.10, the references to the entity logout are scattered across more than 50 source

files. If the user selects one of these references to rename, BabelRef will rename all the

other references as well.

6.2 Fault Localization via Cross-language Program Slicing

We implemented our WebSlice approach as an Eclipse plug-in [102] (Figure 6.11).

WebSlice extends our previous symbolic-execution engine (Section 3) and variability-

aware parsers (Section 4). We use TypeChef’s library for propositional formulas [78]

with a JavaBDD backend [67] for tracking path constraints and checking satisfiability.

Given a data entity requested by the user, WebSlice displays all definitions and references

of the program slice for the entity in an Eclipse tree view, with parent-child relations

showing data-flow relations between the entities. When the user selects a definition/ref-

erence in the slice, WebSlice highlights the corresponding element in the source code.

In Figure 6.11, WebSlice displays the slice for the PHP variable $_POST[“delete"], which

has a direct information-flow relation with the variable $id and an indirect relation with

the HTML input ‘userid’ embedded in PHP code (visible in the Eclipse view but not

www.manaraa.com

82

Figure 6.11 The WebSlice Eclipse plug-in

visible in the source code). The user can also request a backward slice for a data entity;

in that case, WebSlice will show the slice in another tab. This type of cross-language

slicing through embedded code was not possible with traditional editors. Such a slice

produced by our tool can assist developers in debugging a program error manifesting

at a given program entity. The developer can investigate the slice to identify potential

faults resulting in the error.

www.manaraa.com

83

6.3 Bug Detection

6.3.1 Dangling Reference Detection

We introduce Dangling Reference Checker (DRC) [107, 104], a tool to statically detect

PHP and embedded dangling references in PHP-based web applications. DRC matches

the constraint of each reference against those of their declarations to check if a reference

is dangling. There are two cases in which a reference becomes dangling: (1) there exist

no declarations with the same name and type as the reference; and (2) such declarations

are found, but the combined constraint of all the matched declarations is stricter than

the constraint of the reference (i.e., there exist some program executions in which the

reference exists while its declarations do not).

We implemented DRC as a plug-in to the Eclipse environment. The key features in

DRC include (1) displaying program entities/references and their constraints, and (2)

detecting dangling references of both PHP and embedded types.

6.3.1.1 Entity Table

When a PHP program is loaded, DRC analyzes it and displays the list of entities

(declarations and references) in an Entity Table (Figure 6.12). Each entity is displayed

with its name, type, code location, and path constraint. For example, in Figure 6.12,

the entity $input at line 33 of Login.php is a declaration of a PHP variable with its path

constraint corresponding to the branching conditions at lines 26 and 32.

6.3.1.2 Dangling References

Using the Entity Table, DRC matches each reference with the corresponding declara-

tions by names, types, and constraints. In the Dangling Reference View tab (Figure 6.13),

the declarations and references of the same entity are grouped together. When the user

selects an entity’s name on the left-hand-side panel (Entity List), the list of its decla-

www.manaraa.com

84

Figure 6.12 DRC’s entity table

rations/references will be displayed on the right-hand-side panel (Reference List). If a

reference cannot be matched to any declaration by names/types/constraints, DRC re-

ports it as a dangling error. These dangling references are shown as a special entity

group named “[Dangling References]” (Figure 6.13). As seen, DRC detects two dangling

references in the file Login.php: the PHP variable $input on line 37 and the (embedded)

JS reference to the HTML input userid on line 17 (not visible in Figure 6.13).

6.3.1.3 Case Studies

Figure 6.14 shows an example in which DRC detects that middleinitial (line 13) is an

SQL embedded dangling reference, since middleinitial was missing from the database query

(line 9).

Figure 6.15 displays DRC’s detection result on SquirrelMail at revision 11,338. The

www.manaraa.com

85

Figure 6.13 DRC’s dangling reference detection

PHP variable $query is defined only when $response == ‘NO’ (line 397). In the else branch

of the if statement on line 396 ($response == ‘NO’ evaluates to false), the variable $query

is not defined, and thus its reference on line 405 is a dangling one. The commit log from

the fix at the next revision confirms this error detected by DRC: “$query is also used

when $response != ‘NO’. Fixed undefined notice error...”

6.3.2 HTML Validation Error Detection

We propose PhpSync [105] (Figure 6.16), an bug-locating and fix-propagating tool for

HTML validation errors in PHP-based web applications. Given an HTML page produced

by a PHP server page, PhpSync uses Tidy [76], an HTML validating/correcting tool to

find any validation errors on the HTML page. If errors are detected, PhpSync leverages

www.manaraa.com

86

Figure 6.14 Embedded dangling reference detection in DRC

the fixes from Tidy in the given HTML page and propagates them to the corresponding

location(s) in the PHP code. In the cases that Tidy cannot provide the fixes, the bug-

locating function in PhpSync will help developers to quickly locate the corresponding

buggy locations in PHP code from the buggy HTML locations found by Tidy. PhpSync

does not require the input that produces the erroneous page.

The inputs to our algorithm include a given HTML page C produced by a PHP page

S. PhpSync uses Tidy [76] to check C for HTML validation errors. If errors are found,

it uses Tidy to produce the corrected version C ′ of C.

Bug-Locating. There exist the cases in which Tidy is not able to provide the

fixes [76]; however, it points out the buggy locations in the HTML page C. In such cases,

for each error location in C, PhpSync uses our mapping algorithm (Section 5.3.3.2) to

automatically locate the corresponding literal node(s) in the D-Model of S and then

locate the PHP literal(s) in S.

www.manaraa.com

87

Figure 6.15 Dangling reference detected by DRC in SquirrelMail

Fix-Propagating. If Tidy can fix those errors, PhpSync will propagate those fixes

through the mapping between S and C. Because Tidy does not provide the operations

of the fixes but produces only the corrected version C ′, we map the texts between C and

C ′ to derive the fixing changes. The output of the algorithm is all the changes at the

character level between C and C ′, which are then used to propagate to the server code.

6.4 Output Coverage Visualization for Output-Oriented Testing

Output coverage metrics (Section 5.3) summarize coverage in a number. To better

understand output coverage, for example, in order to guide selection of additional test

cases, we need to indicate which parts of the output have been covered, or, perhaps even

more importantly, not covered. Highlighting covered and uncovered code fragments in

IDEs as done by conventional code-coverage tools (e.g., EclEmma and Cobertura) or on

www.manaraa.com

88

Figure 6.16 Bug-locating and fix-propagating for HTML validation errors to PHP
server-side code

HTML source code addresses the wrong abstraction level for testers who are focused on

the output and output-related quality criteria such as consistent font size and colors.

Therefore, we borrow from coverage visualizations with background colors in IDEs, but

apply them to the rendered output of a web page. To that end, we design a tool named

WebTest that displays the output universe in one single web page and allows testers to

visually explore covered and uncovered parts of the output universe, as initially exempli-

fied in Figure 5.9c. Since the output universe can be significant in size and cover many

alternative pages, we additionally develop more compact representations in which a user

can interactively explore coverage in different parts of the output space. The testers can

use WebTest to augment test cases or navigate and inspect the output universe directly

to detect certain classes of presentation faults.

To display the output universe in a web browser and modify it to include branching

decisions and coverage information, we need to understand the structure in the output

universe, which can be represented by a VarDOM. Therefore, we encode the VarDOM

www.manaraa.com

89

into a plain HTML page that can be read by a web browser to display on a web page.

Since the VarDOM is an extended version of the DOM with the introduction of Con-

dition nodes and symbolic values, we encode the VarDOM and corresponding coverage

information into HTML as follows:

• DOM nodes in the VarDOM are directly rendered without modification: We simply

display the corresponding HTML element and recursively displaying its child nodes

(if any) in HTML format. We optionally show some key elements as <html> and

<title> verbatim, as done in many WYSIWYG HTML editors to emphasize the

structure of the page.

• For a Condition node, we make the decision explicit and show all alternatives to-

gether with their constraints in a single page. For example, in Figure 5.9c, we

show both alternatives “Welcome $_GET[‘user’]!” and “Please log in first.” and their

corresponding constraints. We explore an enhanced visualization showing only one

alternative at a time below.

• Symbolic values are rendered using the original PHP code that represents the

symbolic values. For instance, in Figure 5.9c, the symbolic value is shown as

$_GET[‘user’].

• Coverage information is encoded as background colors, similar to IDE tools for

code coverage. We highlight the parts that are entirely covered or uncovered by a

given test suite in green and red background colors (injected by manipulating CSS

attributes). Information about different coverage metrics is shown at the bottom

part of the visualized web page (in Figure 5.9c, we show Covstr only).

With this visual encoding of coverage information in the web output, our tool WebTest

serves two key purposes: First, it allows testers to explore different alternatives on dif-

ferent parts of the web page. Note that our encoding algorithm maintains the original

www.manaraa.com

90

layout and format of concrete web pages as far as possible so that the testers can visu-

alize the actual web pages and quickly spot any presentation errors such as font size or

spelling errors. Second, it allows testers to know how well a test suite covers the output

universe and explore uncovered scenarios or uncovered parts of the web page.

Enhancement. Even with symbolic values, the output universe of a web page can

be large, such that showing all alternatives side by side on a single page can lead to huge

pages. Even in the relatively small SchoolMate system used in our evaluation, a rendering

of all alternatives fills 59 printed pages. To address scalability and avoid overwhelming

users, we enhance our original user interface while maintaining its key functionality.

Specifically, we dynamically show and hide the alternatives on the output universe in

tabs such that only one alternative is shown for each decision at a time, but such that a

user can interactively explore alternatives.

A consequence of hiding part of the output universe is that coverage may be harder to

assess. Instead of a binary red/green decision showing whether a fragment is covered, we

indicate relative coverage for the entire fragment (including potentially hidden fragments

of inner decisions) with our coverage metrics. That is, if we view part of the page

with content that has been covered but that includes hidden uncovered alternatives, we

visualize the corresponding coverage metric, such as 90% Covstr in a sidebar.

We show a screenshot of our output from the SchoolMate system in Figure 6.17. The

main panel (on the left) shows the concrete web page for a specific combination of output

decisions that a tester is currently exploring. The side panel (on the right) shows the

made (possibly nested) decisions and allows a tester to explore alternatives in the output

universe. When the tester clicks on one of the buttons listing alternatives, WebTest

switches to the selected alternative (dynamically switching with JS) and displays the

corresponding web page on the left. Coverage information is shown next to each alter-

native being selected. The tester can then create additional test cases that explore areas

with lower coverage. In our screenshot, a tester has selected the first alternative out of

www.manaraa.com

91

Figure 6.17 Screenshot of WebTest on SchoolMate-1.5.4

eight possible alternatives for the top-most decision (the other alternatives correspond to

exception cases such as database connection error). The body contains another decision

with seven alternatives out of which the second alternative is being explored (corre-

sponding to the case that the user is logged in as administrator). Similarly, within that

alternative, the first alternative out of the 35 alternatives is being shown (the logged in

administrator explores the functionality to manage classes in this system). The sidebar

additionally indicates that 90% of the output of this alternative has been explored.

www.manaraa.com

92

CHAPTER 7. EMPIRICAL EVALUATION

In the following sections, we investigate the accuracy, efficiency, and usefulness of

our cross-language program analysis techniques. Specifically, we evaluate the following:

• Call graphs for embedded client code (Section 5.1)

• Cross-language program slicing (Section 5.2)

• Dangling reference detection (Section 6.3.1)

• HTML validation error detection (Section 6.3.2)

• Output-oriented testing (Section 5.3)

7.1 Evaluation of Call Graphs for Embedded Client Code

Our approach to build call graphs has a number of sources of potential inaccuracies.

While variability-aware parsing and call-graph building for HTML and CSS are concep-

tually sound, symbolic execution may not produce output for all string literals, parsing

has limitations regarding symbolic values, and JS analysis uses potentially inaccurate

reencodings, as we explained. In an evaluation with real-world PHP applications, we

investigate the practicality and accuracy of our approach.

In addition, IDE support for navigation is especially useful if call-graph edges are

nontrivial (e.g., developers need to search across files). Thus, we investigate the com-

plexity of the created call graphs to characterize the usefulness of IDE support based on

our tooling.

www.manaraa.com

93

7.1.1 Experiment Setup

Table 7.1 Subject systems

Subject System Version Files LOC

AddressBook (AB) 6.2.12 100 18,874
SchoolMate (SM) 1.5.4 63 8,183
TimeClock (TC) 1.04 69 23,403
UPB 2.2.7 395 104,640
WebChess (WC) 1.0.0 39 8,589

Table 7.2 Coverage on subject systems

System Exec. Output Size Re-encoded JS HTML Cov. by Entries

Stmts Chars Conds Stmts Re-enc Errors Main All

AB 1,546 15,480 195 223 28 12 32% 94%
SM 2,386 30,318 52 188 46 155 24% 92%
TC 1,311 15,157 99 128 36 22 11% 63%
UPB 5,175 35,587 711 876 0 30 6% 79%
WC 93 3,409 1 84 0 0 6% 97%

We collected five PHP web applications (Table 7.1) from sourceforge.net with various

sizes and without heavy use of object-oriented constructs (also used in related work [105,

125]). For each system, we selected a main file, which might also recursively include

other files, and ran our analysis on that file. When encountering HTML syntax errors

during parsing (most often due to missing closing tags), we manually fixed them in the

PHP code and report results after applying all fixes. All subject systems have multiple

entry points (PHP files that can be called by a user), the call graphs of which can be

merged, but due to the manual effort of fixing syntax errors, we considered only a single

main file per system. The number of symbolically executed PHP statements, the size of

the generated symbolic output, the size of JS code, and the number of fixed errors are

listed in Table 7.2.

www.manaraa.com

94

7.1.2 Practicality and Accuracy of Call Graphs

All call-graph computations completed within a few seconds (< 8 seconds on average,

< 12 seconds in the worst case). Since this performance is acceptable for executing anal-

yses in the background of an IDE, we did not perform additional rigorous performance

measurements. Currently, we need to fix all HTML syntax errors before we can build call

graphs, which is a positive side effect, but also a laborious endeavor. An error-recovering

parser [32] or automated repair tools [125] could help with this step. Overall, our tool is

easy to set up for a new project by pointing it to the main file(s).

Table 7.3 Complexity of call graphs

System HTML Jumps CSS Jumps JS Jumps Strings

Total xStr xFiles Total xFiles Total xStr on echo

AB 345 68% 2.3% 157 100% 7 85.7% 90%
SM 610 19% 6.2% 127 100% 33 100% 81%
TC 269 49% 4.5% 74 100% 2 0% 99%
UPB 386 49% 4.4% 136 100% 75 0% 44%
WC 40 63% 0% 20 100% 4 75% 97%

Tot/Avg 1,650 46% 3.5% 514 100% 121 52% 79%

xStr/xFiles: Number of call-graph edges that cross strings/files
Avg: Geometric mean for non-zero relative numbers (percentages)

Precision. In Table 7.3, we list the number of call-graph edges detected in all

subject systems. We manually checked the created call graphs for correctness. In small

call graphs (< 100 edges), we inspected all call-graph edges; in large call graphs, we

randomly sampled 50 edges each. We consider a call-graph edge as correct when it

connects two nodes tracked to PHP string literals, and the nodes are actually in a call

relationship. All 604 checked edges were correct, yielding a precision of 100%.

Recall. In the absence of ground truth, recall is more challenging to measure. We

approach recall with three proxy metrics—(1) coverage, (2) symbolic discipline, and (3)

reencoding losses—addressing the three sources of inaccuracies in our approach.

www.manaraa.com

95

1. First, we can cover only literals that are output as part of an execution of the PHP

code (string literals in dead code are never printed and we cannot build call graphs for

them). In addition, due to limitations of our symbolic-execution engine (see Section 3),

we may not cover every possible execution path or may not be able to track some string

literals to their output. To characterize the potential loss of call-graph nodes, we measure

coverage as the ratio between the number of output characters that are covered by

symbolic execution and the total number of all output characters in the project. As a

heuristic to ignore string literals that are not output, such as array index ‘method’ in

$_GET[‘method’], we only consider literals that contain the representative HTML tag-

opening character ‘<’. When executing the single main file, we cover 6% to 32% of all

characters. When symbolically executing all entry points of the PHP code, we cover

on average 84% of all characters, (see the last column in Table 7.2). This shows that

symbolic execution can achieve high coverage in our subject systems.

2. Second, we manually inspected all occurrences of symbolic values in the output of

symbolic execution. We did not find a single case where a symbolic value was relevant

for the structure of the VarDOM. That is, a symbolic value may add substructure but

in no case was it required to provide the closing tag for a concrete opening tag or similar

structural parts. This confirms our assumptions in Section 4.2 and makes inaccuracies

due to symbolic values unlikely in our subject systems.

3. Third, while HTML and CSS analyses are sound with regard to a brute-force

approach, our reencoding for JS analysis may lead to documents in which the used JS-

call-graph tool WALA cannot find all call-graph edges. Note that we do not want to

check the quality of WALA’s call graphs but only to what degree our reencoding prevents

discovering call-graph edges that WALA could discover without reencoding. Thus, we

generated random configurations from the symbolic output (i.e., different selections for

the #if decisions) and executed WALA on the generated code (without variability and

without reencoding), comparing the resulting call-graph edges with the ones identified

www.manaraa.com

96

when analyzing the entire configuration space with reencoding. We did not find a sin-

gle case where reencoding resulted in missing call-graph edges compared to analyzing

individual configurations.

Overall, the results and performance are practical and promising. In our subject

systems, our tool yields a perfect precision. Investigating the sources of inaccuracies

that lead to reduced recall shows that symbolic execution can cover 84% of string literals

and that symbolic values during parsing and reencoding of JS are unproblematic. More

details are in Table 7.2.

7.1.3 Complexity of Call Graphs

Besides accuracy, we investigated the potential benefit of such support. Using the

created call graphs, we measure several characteristics to show the complexity of the

underlying problem, suggesting the effort required when developers have no IDE support.

0 100 200 300 400

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Distance (in lines)

C
al

l
g

ra
p
h

 e
d

g
es

 (
re

la
ti

v
e)

HTML (all projects)

AB (JS)

TC (JS)

SM (JS)

UPB (JS)

WC (JS)

Figure 7.1 Cumulative distribution of distance of HTML and JS jumps (within the
same file), depicting the percentage of jumps shorter than a given distance

First, we investigated the locality of call-graph edges. Call-graph edges are often

nonlocal. 46% of all HTML call-graph edges on average and up to 100% of JS call-

graph edges connect nodes in different string literals (Table 7.3). That is, the connected

www.manaraa.com

97

elements are written in different parts of the server-side code, with some PHP code

between them. While many call-graph edges for HTML are relatively local, with source

and target in the same line or only few lines apart, about 8.3% are more than 20 lines

apart and 3.5% are even in different PHP files. JS call-graph edges often span a larger

distance, an average of 196 lines, but were mostly within the same PHP file. For CSS,

even all call-graph edges connect nodes in different files since all CSS rules are written in

separate files in our subject systems. Tool support is especially valuable for long jumps

and jumps across files. Details are listed in Table 7.3 and Figure 7.1.

To characterize how difficult it is to track string literals through PHP code, when

they are (re)assigned, concatenated, or part of other computations, we also tracked

how many string literals are printed immediately or appear as inline HTML code in a

PHP file. Again, we track only string literals containing the character ‘<’. We found

that on average 21% of all such string literals are assigned to variables before they are

eventually printed at a different location (Table 7.3). Our analysis can follow these string

literals and create correct call graphs, while navigation without IDE support might not

be straightforward.

Second, conditional jumping where one HTML tag is closed by alternative closing tags

depending on the server-side execution is a challenge for tools and humans. Our solution

with variability-aware parsing can correctly handle those cases and create corresponding

conditional call-graph edges. We found two cases where the source of an HTML jump

has multiple targets in AddressBook and TimeClock each, both similar to the <script> tag

in our running example. Here, a developer may accidentally finish manual search before

finding all relevant closing tags.

In addition, we found 21 cases in SchoolMate in which call-graph edges among nodes

with the same name are disambiguated by their respective presence conditions, similar

to the JS update call in our running example. Our results show that the produced

client-side structure mostly aligns with the server-side execution, so that these cases are

www.manaraa.com

98

relatively rare in practice. They also demonstrate that our more powerful infrastructure

can provide accurate results in common as well as difficult cases.

Finally, a common approach for navigation in embedded client-side code is to use a

global text search, especially for nonlocal jumps. A naive global text search for closing

HTML tags, such as table, a, and form yields hundreds of results in dozens of files even in

the smaller PHP projects. A global text search is only more promising for rare tags, such

as html and body and uncommon JS variables and function names. For CSS, global text

search is almost useless. A developer would not perform a global search in most cases

and in many cases the corresponding jump target is only few lines away (see Figure 7.1),

but nesting of HTML tags, common jumps across string literals, and occasional jumps

over many lines of code and even across files (see Figure 7.1 and Table 7.3) show that a

local search is also not a universal strategy. The relatively rare but possible case that a

jump has alternative targets depending on the server-side execution (as the <script> tag

in our running example), emphasizes that an incomplete local search may actually miss

important targets potentially leading to inconsistencies. Overall, we conclude that text

search can be an effective alternative in many common local cases but that a call graph

can support navigation in many nontrivial cases quantified throughout our evaluation.

Threats to validity. Regarding external validity, we selected only a small sample

of medium-sized subject systems and investigated only a single main file per project, due

to the main bottle neck of manually fixing HTML syntax errors. While we cannot gen-

eralize over arbitrary PHP systems, all systems are real-world open-source applications

developed by others and the results are consistent over all systems.

Regarding internal and construct validity, we used various proxy metrics to carefully

characterize possible recall and usefulness measures. Since we do not have ground truth

about what call graphs to expect, we decided to break down the evaluation into the three

sources of inaccuracies. Implementation defects may also reduce precision and recall, but

our tests and manual investigations did not reveal any issues. Instead of performing a

www.manaraa.com

99

user study in which the navigation benefit may be buried in noise or over-exaggerated

with artificial tasks or material, we decided to characterize usefulness by quantifying

nontrivial call-graph edges in which developers could likely benefit from a tool. We

expect a strong correlation with actual improvements in practice, but a usability study

is still required.

7.2 Empirical Study on Cross-language Program Slicing

Program slicing tools are intended to help developers in various software maintenance

tasks such as identifying the impact of a change. To evaluate a slicing approach, one

could design a user study to show that slices are very difficult to manually identify or

that developers could significantly benefit from a tool in complicated (favorable) cases.

However, slicing in general has been shown to be useful in a number of applications [138,

152]. The more interesting question is how often such complicated cases occur. Therefore,

we designed a study to quantify characteristics of data-flow dependencies and slices

in existing web applications. Specifically, we are interested in how many entities are

embedded within PHP strings, how many data-flow edges are cross-language or cross-

string, how many slices cross languages and even web pages or require investigating

embedded code fragments—all properties for which no current slicing tool is available.

Although such complexity measures are only proxies for actual developer tasks, we argue

that identifying a large set of complex data-flow dependencies or slices would demonstrate

the benefit of automated slicing in dynamic web applications.

7.2.1 Experiment Setup

We implemented our cross-language program slicing technique in a tool called Web-

Slice (Section 5.2 and 6.2). To test the resulting data-flow graphs (and program slices)

computed by WebSlice , we created 100 test cases for SchoolMate-1.5.4, a real-world web

www.manaraa.com

100

application that we used in our study, covering all types of data flows. For data flows

within PHP, we instrumented Quercus [118], an existing PHP interpreter, and dynami-

cally tracked actual data-flow relations as a basis for our test oracles. For cross-language

data flows and those within JS, we created the test cases manually. There are 20 test

cases that include inter-page data flows; 2 of them failed because WebSlice included an

infeasible edge (see last paragraph in Section 5.2.5). All test cases for other types of

data-flow edges passed.

To answer our research questions, we collected from sourceforge.net five PHP web ap-

plications, also used in our previous study (Table 7.1). For each system, we automatically

chose a set of page entries (i.e., PHP files that generate output containing an <html>

tag) and ran WebSlice on those pages to create the data-flow graph for the entire system.

To compute the slices, we considered each entity (a node in the data-flow graph) as a

slicing criterion and calculated the program slice for the entity.

Table 7.4 Running time on subject systems

System Entries Exec. Stmts Time

AB 17 25,713 10.0s
SM 1 2,942 5.2s
TC 32 26,388 13.3s
UPB 51 77,959 37.6s
WC 9 6,874 4.6s

The initial symbolic execution on all entries and construction of the data-flow graphs

completed within a few seconds/entry for all systems (Tables 7.4). When the source

code is changed, WebSlice needs to re-compute relevant page entries associated with the

change only. This means that WebSlice can be run in the background of an IDE. Once

the initial computations are finished, WebSlice can instantly show the program slice for

any selected program point.

www.manaraa.com

101

Table 7.5 Complexity of data-flow graph (nodes)

PHP Non-PHP Entities

System Entities Total SQL HTML JS Embed. N-Echo

AB 10,591 266 8 220 38 46 10
3% 83% 14% 17% 4%

SM 4,935 2,402 404 729 1,269 2,402 452
17% 30% 53% 100% 19%

TC 15,291 2,145 214 1,717 214 2,145 214
10% 80% 10% 100% 10%

UPB 32,309 1,308 0* 1,160 148 1,191 447
0% 89% 11% 91% 34%

WC 3,805 497 48 377 72 86 48
10% 76% 14% 17% 10%

Total 66,931 6,618 674 4,203 1,741 5,870 1,171
10% 64% 26% 89% 18%

N-Echo: Embedded entities that are not on echo/print statements
*There are 0 SQL entities in UPB since this system stores data in local files

instead of an SQL database.

7.2.2 Complexity of Data-Flow Graphs

We used our tool to investigate the complexity of data-flow graphs in dynamic web

applications. Tables 7.5 and 7.6 show the complexity of data-flow graphs. Overall,

developers would have to deal with a large number of SQL, HTML, and JS entities.

There are a total of 4,203 HTML entities in all five systems, accounting for 64% of

all non-PHP entities. There exist cases where developers would deal with up to 384

HTML entities in a file (e.g., in TimeClock) and up to 88 JS entities in a file (e.g., in

SchoolMate). Especially, they must process as many as 89% of the non-PHP entities by

examining embedded code in PHP strings (the remaining are directly inlined in PHP

code). Moreover, not all embedded entities are printed directly on echo/print statements:

18% of them are assigned to variables, propagated through the program, and printed out

at a different location, which makes it challenging to track the data flows without tool

support. The edges in the data-flow graphs also demonstrate significant complexity. Out

www.manaraa.com

102

Table 7.6 Complexity of data-flow graph (edges)

Data-flow Edges

System Total xLang xFile xFunc xString xPage

AB 13,406 416 2,538 3,043 474 356
3% 19% 23% 4% 3%

SM 6,945 2,426 1,565 164 2,603 1,292
35% 23% 2% 37% 19%

TC 16,490 655 3,493 46 937 332
4% 21% 0% 6% 2%

UPB 38,186 4,983 6,986 3,121 5,470 4,886
14% 19% 9% 15% 14%

WC 3,934 887 1,463 1,056 992 829
23% 37% 27% 25% 21%

Total 76,961 9,367 16,045 7,430 10,476 7,695
12% 21% 10% 14% 10%

xLang, xFile, xFunc, xString, xPage: Edges that cross languages, files, functions, strings, page entries

of 76,961 data-flow edges, 12% cross languages, 21% cross files, and 14% cross strings.

This result shows that tool support would be useful in those cases.

7.2.3 Complexity of Program Slices

Table 7.7 Complexity of program slices

System Slices Size Len xLang xFile xFunc xString xPage

AB 6,827 6 5 287 2,330 3,202 344 243
SM 4,185 5 4 1,518 1,519 917 1,735 890
TC 9,145 6 4 1,193 2,007 643 1,378 224
UPB 17,906 7 5 795 7,904 8,386 1,236 681
WC 2,607 4 3 312 1,557 1,517 408 265

Tot/Avg 40,670 5.6 4.2 4,105 15,317 14,665 5,101 2,303
10% 38% 36% 13% 6%

Size, Len: Median size and length of a slice
xLang, xFile, xFunc, xString, xPage: Slices that cross languages, files, functions, strings, page entries

Table 7.7 shows complexity metrics for slices (we exclude those that have only one

entity since the entity is at the end of data flows).

www.manaraa.com

103

Size of a slice. We compute the medians of sizes and lengths of slices and calculate

their averages. On average, a developer would need to deal with a slice involving 5.6

entities and having a length of 4.2 (the longest path in the data-flow graph starting

from a slicing criterion). 10% of the slices involve more than 40 entities (not shown in

Table 7.7), which would be nontrivial to identify manually.

100.0%

59.9%

35.8%
21.9%

12.2% 9.5%
0.0%

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

>= 1 >= 2 >= 4 >= 8 >= 16 >= 32 >= 64

P
e

rc
e

n
ta

n
ge

 o
f

cr
o

ss
-l

an
gu

ag
e

 s
lic

e
s

Number of cross-language data-flow edges

Figure 7.2 Cross-language data flows in a cross-language program slice

Cross-language data flows in a slice. Importantly, many of the slices are cross-

language (in all five systems, 4,105 slices contain at least one cross-language data-flow

edge). As shown in Figure 7.2, 35.8% of those slices have at least 4 cross-language

data-flow edges, and 9.5% have at least 32 cross-language edges.

Cross-location data flows in a slice. Many slices are also often cross-location:

38% of the slices cross files, 36% cross functions, and 13% cross string fragments.

7.2.4 Discussion

Implications. The high complexity of the data-flow graphs and program slices

shows that in real-world web applications, manually inspecting a program slice can be

challenging, and developers would likely benefit from program slicing tool support.

Threats to validity. Regarding external validity, we used only a small set of

medium-sized subject systems due to our limited support for PHP object-oriented con-

www.manaraa.com

104

structs. Regarding construct validity, we used complexity as a proxy metric to show the

usefulness of our program-slicing technique.

7.3 Evaluation of Dangling Reference Detection

This section presents our empirical studies to evaluate the accuracy of DRC, our tool

for detecting dangling PHP and embedded references (Section 6.3.1).

7.3.1 Experiment Setup

Table 7.8 Subject systems and reported dangling references

System History Cand. Dangling PHP Embed

Start Rev Rev Ent Ref Ent Ref

BeehiveForum 04/’02 173 16 12 18 6 6
ImpressCMS 12/’07 65 14 15 19 0 0
MRBS 05/’00 26 13 18 29 0 0
PHP-Fusion 03/’08 42 14 15 19 5 7
PhpWiki 06/’00 37 14 13 21 1 1
SquirrelMail 11/’99 47 17 21 23 0 0
TikiWiki 10/’02 87 15 13 17 3 3

All 477 103 107 146 15 17

We selected as our subject systems seven PHP-based dynamic web applications from

sourceforge.net (Table 7.8) with high popularity rates and long histories. Column History

Start shows their starting dates. To identify the candidate revisions (column Cand. Rev)

that potentially contain the fixes for dangling bugs, we wrote a program to analyze

the commit logs of all revisions (up to 07/1/12), and selected the ones containing the

keywords such as “dangling”, “dangled”, “undefined”, and “undeclared”. To remove false

positives, we then manually investigated all 477 revisions and collected those that actually

contained a fix to at least one dangling reference error (column Dangling Rev). We used

them as the oracle.

www.manaraa.com

105

The last 4 columns show the numbers of cases that occurred in PHP code (PHP)

and embedded code (Embed). For each type, columns Ent and Ref display the number of

entities (variables/functions) having dangling references and the number of the dangling

references, respectively. (One entity might have multiple references to it.) As seen in

Table 7.8, 103 revisions were reported as the fixes for at least one dangling bug. There

were 163 dangling references, with 146 and 17 being PHP and embedded ones.

We ran DRC on those systems and manually checked the results. If the detected

dangling cases are covered those in the oracle, we counted them as correct ones. If DRC

reported a dangling case that was not in the oracle, we manually verified if it is a truly

incorrect case or a newly discovered one (not yet reported). We then computed precision

and recall. Precision is the ratio between the number of correctly detected cases over

the total number of detected ones. Recall is the ratio between the number of correctly

detected ones over the number of cases.

7.3.2 Accuracy of Dangling Reference Detection

Table 7.9 DRC’s detection accuracy

System Corr Incor Miss Pre% Rec% New

BeehiveForum 16:22 5:12 4:4 76%:65% 80%:85% 2:2
ImpressCMS 19:25 5:12 2:2 79%:68% 90%:93% 6:8
MRBS 37:50 7:14 3:5 84%:78% 93%:91% 22:26
PHP-Fusion 29:51 9:23 0:0 76%:69% 100%:100% 9:25
PhpWiki 13:24 2:6 4:5 87%:80% 76%:83% 3:7
SquirrelMail 21:26 6:8 4:4 78%:76% 84%:87% 4:7
TikiWiki 16:23 6:16 5:5 73%:59% 76%:82% 5:8

All 151:221 40:91 22:25 79%:71% 86%:89% 51:83

Table 7.9 shows the results. Columns Corr, Incor, andMiss show the number of dangling

cases that were correctly/incorrectly detected, and missed by DRC. Since an entity might

have multiple references, in each table cell, two numbers are reported: the first one is

the number of dangling entities and the second is the number of dangling references.

www.manaraa.com

106

As seen, DRC is accurate in dangling reference detection with an average of 89% recall

(up to 100%) and 71% precision (up to 80%). Detection precision for dangling entities

is higher. Interestingly, DRC discovered 83 not-yet reported cases (column New). We

manually verified them as correct detection cases. DRC is also efficient. Detection time is

typically less than two seconds per PHP file. Thus, our solution for matching constraints

in the detection algorithm is practical. Let us present a few correctly detected cases by

DRC next.

7.3.3 Case Studies

7.3.3.1 PHP Dangling References in MRBS at Revision 590

if (isset($areamatch)) { ...
 $areamatch = unslashes($areamatch); ...
} else {
 $From_day = $day;
 $From_month = $month;
 $From_year = $year;
} ...
if ($pview != 1) {
 genDateSelector("From_", $From_day, $From_month, $From_year); ...
}

316
320
335
343
344
345
350
361
368
443

Source file: /web/report.php, revision: 590

$From_day = get_form_var('From_day', 'int');
$From_month = get_form_var('From_month', 'int');
$From_year = get_form_var('From_year', 'int');

fix by adding
(rev800)

Commit log: - fixed bug $typematch, variable undefined

DANGLING

Figure 7.3 Newly found PHP dangling references in MRBS at revision 590

In Figure 7.3, in addition to detecting the dangling reference $typematch (not shown)

reported in the commit log, DRC also found three other dangling ones that were not

reported at revision 590: the three references to $From_day, $From_month, and

$From_year on line 368 are dangling since they are initialized only in the else branch

of the if statement on line 316. As shown in the fix, this was corrected 210 revisions later

www.manaraa.com

107

by adding the variables’ initializations before line 316. Thus, DRC could have helped

developers detect those dangling errors early.

7.3.3.2 PHP Dangling Reference in ImpressCMS at Revision 3883

function createcat($cid = 0) { ...
 if ($cid) { ...
 $cat_arr = $xoopsDB -> fetchArray($xoopsDB -> query($sql)); ...
 } else {
 $groups = true;
 } ...
 if ($totalcats > 0) { ...
 $mytreechose -> makeMySelBox(..., "title", $cat_arr['pid'] , 1, "pid"); ...
 } ...
}

24
48
50
70
71
72
80
83
86

193

Source file: /modules/mytube/admin/category.php, revision: 3883

$totalcats > 0

$cid

$totalcats > 0 && $cid

fix

Commit log: Fixed undefined cat_arr and Delete button not working in modifying form

DANGLING

Figure 7.4 PHP dangling reference $cat_arr in ImpressCMS at line 83

In Figure 7.4, since the condition where $cat_arr is defined (line 48) and the condition

where $cat_arr is accessed (line 80) do not match, there exists an execution where the

variable $cat_arr is undefined (i.e., $cid=F and $totalcats > 0). As shown in the fix, devel-

opers added the check on $cid to the condition at line 80 so that $cat_arr is guaranteed

to have been initialized whenever it is accessed. DRC was able to detect this case.

Limitations. We analyzed the inaccurate cases and identified the following limita-

tions. First, there exist cases where our symbolic execution could not resolve the name of

an included file, leading to incorrect identification of dangling references. Second, DRC

does not consider the order of declarations and references, which could potentially cause

inaccuracy. Third, our algorithm to find a solution for constraints also causes inaccu-

racy. Our symbolic execution to approximate the output created some missed embedded

entities. Finally, DRC cannot handle the cases of eval to generate a portion of code.

www.manaraa.com

108

7.4 Evaluation of HTML Validation Error Detection

This section presents our empirical evaluation on PhpSync, our bug-locating and

fix-propagating tool for HTML validation errors in PHP-based web applications (Sec-

tion 6.3.2). Our research questions are (1) how accurately PhpSync maps HTML code

to server code, and 2) how accurately it propagates the fixes from Tidy to server code.

7.4.1 Experiment Setup

Table 7.10 Subject systems and D-Models

Subject Systems D-Models

Name Files KLOCs ExFiles Nodes Control Time

SchoolMate-1.5.4 63 8 60 5357 885 0.6s
TimeClock-1.4 69 23 7 886 101 0.1s
WebERP-4.0.2 654 220 16 59338 14841 2.8s
UPB-2.2.7 395 105 6 8383 1621 0.7s
AddressBook-6.2.12 100 19 10 1789 320 0.3s
Manhali-1.3.2 299 52 17 7952 2353 0.6s

All experiments were carried out on a Windows 7 Home Premium 64-bit computer

with CPU Intel Core i3-370M 2.40 GHz and 6GB RAM. We collected six PHP systems

from sourceforge.net in different sizes and domains (Table 7.10). We read the code to

gain the knowledge and set up those systems on our server with required databases and

sample data. For each system, we selected multiple server pages for testing and built

their D-Models. Column ExFiles shows the average number of executed server files for

a page. Columns Nodes and Control show the average number of all nodes and that of

control nodes (Select/Repeat) in a D-Model. Running time is in column Time.

7.4.2 Accuracy of Client Code and Server Code Mapping

To evaluate PhpSync’s accuracy in mapping the texts in HTML to PHP code, we first

collected the HTML test pages from the subject systems by navigating through several

www.manaraa.com

109

HTML pages within that system on a web browser. We recorded each page as an HTML

test page by saving its corresponding HTML code and the navigation steps to get to that

page (for later reproducing the page and checking). For each subject system, we selected

the HTML pages with different presentations to have the samples of client pages with

diverse page structures.

Our evaluation method is to use PhpSync to map every character in an HTML test

page C to the corresponding character in a PHP literal or PHP variable, and then to

verify those mappings for all characters by the combination of a checking tool and human

subjects. Given an HTML test page, PhpSync divides its HTML contents into several

text fragments and maps each fragment into the PHP literals/variables. Because all of

those fragments cover the entire HTML test page, to verify PhpSync’s mapping for each

character, one can check the mapping for each of those fragments (called test fragments).

The unmapped fragments are considered to have incorrect mappings.

To reduce the effort of manual verification from human subjects, we wrote an eval-

uation program that checks PhpSync’s mapping from every test fragment f of the test

page to a PHP literal l. If f is mapped to a PHP variable, we examine the mapping

manually. Otherwise, that program replaces only the first character in the literal l in

the PHP code S with a special character (SC) that does not appear in the page C. We

then executed the instrumented PHP code S ′ and followed the same recorded navigation

steps to produce the new HTML page C ′. If in C ′, the first character position in f is

replaced with that SC and all other positions in C ′ are un-changed, we consider it as a

correct mapping for that character. Moreover, in such a case of correct mapping for that

character, if f is exactly identical to l, we consider the mapping (f → l) correct for all

characters in the fragment f , and consider f as a correctly mapped fragment. When other

positions in C ′ besides f have been changed, the evaluation tool cannot conclude that the

mapping is incorrect. For instance, there may exist a correct mapping from some client

code to a PHP literal inside a for/while loop. When the client code C ′ is produced, the

www.manaraa.com

110

SC character may appear multiple times in C ′ due to the execution of the loop. Thus,

in other cases, we verified the mapping from f to l by the program semantics.

Table 7.11 Mapping and fixing result on SchoolMate-1.5.4

Navi Steps Mapping Fix-Propagating

Fragments Characters (×1000) Err. Tidy Php
All Auto Man Corr. All Corr. Acc. Sync

1 Login 15 12 3 15 7.0 7.0 100% 38 4 4
2 School 42 27 15 42 11.8 11.8 100% 50 19 19
3 Terms 45 31 14 43 12.2 12.1 99% 52 22 22
4 Semesters 51 35 16 49 12.5 12.4 99% 50 20 20
5 Classes 96 64 32 96 12.9 12.9 100% 57 27 27
6 Users 87 58 29 85 13.1 12.9 99% 64 34 34
7 Teachers 56 38 18 56 12.0 12.0 100% 50 20 20
8 Students 105 68 37 105 13.0 13.0 100% 50 20 20
9 Registration 102 69 33 102 12.4 12.4 100% 49 19 19
10 Attendance 73 50 23 72 11.8 11.6 99% 50 20 20
11 Parents 68 44 24 68 12.1 12.1 100% 50 20 20
12 Announce 45 31 14 43 12.3 12.2 99% 50 20 20
13 Terms/Add 19 15 4 19 10.3 10.3 100% 47 18 18
14 Terms/Edit 27 19 8 27 10.0 10.0 100% 47 18 18
15 Sem./Add 30 22 8 30 10.3 10.3 100% 47 18 18
16 Sem./Edit 43 30 13 43 10.4 10.4 100% 47 18 18
17 Classes/Add 47 32 15 47 11.0 11.0 100% 47 18 18
18 Classes/Edit 42 30 12 40 10.9 10.7 98% 47 18 18
19 Classes/Grid 22 17 5 22 9.8 9.8 100% 53 20 20
20 Users/Add 19 15 4 19 10.6 10.6 100% 48 19 19
21 Users/Edit 26 18 8 25 10.6 10.3 98% 48 19 19

1060 725 335 1048 236.9 235.8 99.5% 1041 411 411

In Table 7.11, column Mapping shows the result on SchoolMate-1.5.4. We collected a

total of 21 HTML test pages. In column Fragments, the sub-columns All, Auto, Man, and

Corr. respectively show the number of all test fragments in the test page, the numbers of

auto-evaluated, manually-evaluated, and correctly mapped fragments. In column Char-

acters, the sub-columns All and Corr. show the numbers of all characters and correctly

mapped ones in a test page. Acc. shows accuracy, i.e. the ratio of the number of correctly

mapped characters over the total.

www.manaraa.com

111

Table 7.12 Mapping and fixing result on all subject systems

Mapping Fix-Propagating

System Test Fragments Characters (×1000) Complexity Err. Tidy Php Miss Acc. Time
Pages All Auto Man Corr. All Corr. Acc. Files Time Sync

SchoolMate-1.5.4 21 1060 725 335 1048 236.9 235.8 99.5% 6 4.4s 1041 411 411 0 100.0% < 0.2s
TimeClock-1.4 14 2511 2103 408 2484 164.1 162.7 99.1% 5 1.2s 422 136 136 0 100.0% < 0.2s
WebERP-4.0.2 10 2736 1910 826 2564 78.5 75.8 96.7% 5 8.0s 284 188 176 12 93.6% < 1.0s
UPB-2.2.7 10 1234 866 368 1191 56.7 53.9 95.0% 4 0.6s 129 49 47 2 95.9% < 0.2s
AddressBook-6.2.12 10 1853 1341 512 1841 78.9 77.5 98.1% 8 0.3s 64 51 48 3 94.1% < 0.2s
Manhali-1.3.2 10 3717 2616 1101 3610 115.1 105.9 92.0% 9 3.8s 607 189 164 25 86.8% < 0.2s

Column Mapping of Table 7.12 shows the results for all subject systems. Processing

time is in column Time. As seen, PhpSync achieves very high accuracy (an average of

96.7%) in character mapping with a small processing time (an average of 3 seconds for

a test page of about 10,000 characters). Column Files shows us that on average a test

page is produced by 6 PHP files. Thus, our tool could help reduce developers’ effort in

finding the PHP locations for a given HTML text.

7.4.3 Accuracy of Fix Propagation from Client Code to Server Code

We used the same set of HTML test pages in those systems for an experiment to

evaluate PhpSync’s accuracy in fix propagation. For each test page C, we used Tidy to

detect validation errors. If errors were found and Tidy was able to fix the page into C∗,

PhpSync would be used to derive the fixing changes between C and C∗ and propagate

them to fix the PHP code S into S∗. Then, we executed the fixed PHP code S∗ and

followed the same recorded navigation steps to produce the new HTML page C+. Tidy

was used to check on C+ for validation errors again. After that, the lists of errors

that Tidy had fixed (C → C∗) and PhpSync had fixed via fix-propagation (C → C+)

were automatically compared to determine how well PhpSync propagated those fixes.

Accuracy is measured as the ratio between the number of correctly propagated fixes over

the total propagated fixes. For the cases that Tidy uncovered validation errors but could

not fix, one could use CSMap to auto-locate the erroneous PHP code.

www.manaraa.com

112

The columns under Fix-Propagating in Tables 7.11 and 7.12 display the fix-propagation

results. Column Err., Tidy, and PS show the number of total HTML validation errors

found by Tidy, that of errors fixed by Tidy, and that of errors fixed by PhpSync via

fix-propagation. As shown, PhpSync achieves high accuracy (an average of 95%) in

fix propagation with small processing time. Importantly, it did not introduce any new

validation error.

Threats to validity. Our experiments were on only 6 systems with 74 test pages.

The selected systems and test pages might not be representative. However, the number

of test fragments is very large (13,111), of which 3,550 were manually checked in 15

hours. During that process, human errors could occur. Currently, PhpSync does not

completely handle object-oriented PHP, thus most of the selected systems do not contain

many classes. Four out of six systems have only reasonable sizes and do not contain many

loops for complex computational logics.

7.5 Empirical Study on Output-Oriented Testing

In this study, we are interested in whether or not our proposed output coverage

metrics can serve as a useful metric for testers who are focused on testing the output of a

web application. We call bugs that occur during server-side execution such as undefined

variables and missing parameters as code-related bugs, and defects that manifest in the

output—such as HTML validation errors, layout issues, and spelling errors—as output-

related bugs. In a nutshell, we want to know whether output-coverage metrics are good

indicators of test suites that are effective for detecting output-related bugs and whether

they improve over classic code-coverage metrics for this class of bugs. Specifically, we

will answer the following research questions:

RQ1. Do output-coverage metrics of a test suite correlate well with the number of

detected output-related bugs?

www.manaraa.com

113

RQ2. Do output-coverage metrics correlate with code-coverage metrics?

RQ3. Do output-coverage metrics improve over existing code-coverage metrics in

detecting output-related bugs?

RQ4. Are traditional code-coverage metrics still better than output-coverage metrics

for detecting code-related bugs?

In other words, these questions investigate the correlations among the two categories

of coverage metrics and the two types of bugs (namely C1–C5 as illustrated below). While

RQ1 focuses on C1 and RQ2 focuses on C5, RQ3 is aimed at comparing C1 and C2, and

RQ4 is aimed at comparing C3 and C4.

Output-related bugs

Code-related bugs

Output-coverage metrics

Code-coverage metrics

Types of coverage metrics Types of bugs

7.5.1 Experiment Setup

Table 7.13 Subject systems

Subject system Size Test

Name Version Files LOC pool

AddressBook (AB) 6.2.12 100 18,874 75
SchoolMate (SM) 1.5.4 63 8,183 67
TimeClock (TC) 1.04 69 23,403 63
UPB 2.2.7 395 104,640 67
WebChess (WC) 1.0.0 39 8,589 52

OsCommerce (OC) 2.3.4 787 91,482 92
WordPress (WP) 4.3.1 793 342,097 65

To answer those questions, we analyzed a corpus of seven open-source PHP web

applications (Table 7.13), five of which were used in our previous study (Table 7.1); we

further selected two large, popular systems for our study (OsCommerce and WordPress).

www.manaraa.com

114

Computing output coverage and code coverage. The first step is to run sym-

bolic execution to compute the output universe of each system. For test case generation,

we use the web crawler Crawljax [31] to generate a test pool of test cases (column Test

pool in Table 7.13). Among thousands of generated tests, we remove redundant test

cases producing the same outputs. We then compute output-coverage metrics (Covstr

and Covdec) and code-coverage metrics (statement and branch coverage) for individual

test suites, each containing a set of test cases in the test pool.

We repeat this process for each of the first five subject systems. For the last two

systems, since our symbolic execution has not been well tested on these applications, we

do not compute Covdec, and we approximate Covstr with the total length of string literals

that a test suite covers in the server-side program (as opposed to string literals covered

in the output universe). We compute this alternative coverage directly using the origin

information of string values recorded by our dynamic instrumentation during a test run

(Section 5.3.3.1).

Computing bug coverage. Given a test case or test suite, we count the number

of bugs that it reveals. For output-related bugs, we focus on the two following kinds:

• HTML validation bugs, as detected by the validation tool JTidy [76].

• Spelling errors, as detected by a simple open-source Java spell checker Jazzy [68].

Jazzy may flag false positives, such as unknown tool names, but we count those as

spelling errors nonetheless, as a tester would have to investigate those as well.

For code-related bugs, we enable all levels of error reporting in PHP (setting er-

ror_reporting(E_ALL)) and collect all PHP errors that are reported during a test run.

Comparing output coverage and code coverage. With each type of bug (either

output-related or code-related), we compare the effectiveness of code coverage and output

coverage in detecting those bugs with two different strategies:

www.manaraa.com

115

• Random test suites: We generate random test suites of different sizes (100 test

suites per size). Test suites of the same size may have different coverage on out-

put/code and bugs. By comparing the (Pearson) correlations between a coverage

metric and the number of detected bugs within test suites of the same size, we can

judge the effectiveness of a metric. We repeat this measurement across all possible

sizes (from size 1 to the size of the test pool) to observe the overall trend. We

expect that output-coverage metrics are a better predictor for output-related bugs

than code-coverage metrics.

• Optimized test suites: To simulate a developer optimizing a test suite toward a

specific metric, we optimize the test suite with k tests such that it maximizes a

coverage metric. Specially, we implemented a (deterministic) greedy algorithm that

incrementally adds test cases to a test suite such that each added test case makes

the resulting test suite achieve the highest coverage. We create such an optimized

test suite for all possible sizes k and for each metric (Covstr and statement coverage).

We expect that selecting a test suite optimized for output coverage is more effective

at finding output-related bugs than a test suite optimized for code coverage.

The two experiments assess complementary aspects. The first assesses the predictive

power of a coverage metric, whereas the second assesses the effect of using a coverage

metric as an optimization criterion when creating a test suite (and the effectiveness of

this strategy at different sizes of the test suite).

7.5.2 Results with Random Test Suites

Table 7.14 show the results of our experiment with random test suites. (RQ1) For

most systems, output coverage (Covstr and Covdec) correlate well with bug coverage

for both kinds of output-related bugs (HTML validation errors and spelling errors).

However, Covstr tends to correlate better with output-related bug coverage than Covdec

www.manaraa.com

116

Table 7.14 Pearson correlations among output coverage, code coverage, and output-re-
lated bug coverage for random test suites. Correlations are computed for
a set of test suites of the same size. A pair of values m ± s indicates the
mean m and standard deviation s of correlation values across different sizes
of test suites.

Covstr vs. HTML Validation Errors

System Stmt Cov Covstr Stmt Cov Covdec Branch Cov

AB 0.65± 0.14 0.76± 0.07 0.33± 0.12 0.81± 0.06 0.32± 0.11
SM 0.75± 0.08 0.76± 0.05 0.61± 0.10 0.58± 0.07 0.48± 0.15
TC 0.87± 0.06 0.82± 0.05 0.83± 0.07 0.16± 0.10 0.57± 0.08
UPB 0.27± 0.18 0.34± 0.12 0.17± 0.11 −0.07± 0.09 0.15± 0.11
WC 0.51± 0.12 0.35± 0.24 0.30± 0.11 0.29± 0.23 0.27± 0.14
OC 0.80± 0.19 0.59± 0.13 0.41± 0.13 N/A 0.39± 0.14
WP 0.62± 0.07 0.48± 0.09 0.62± 0.07 N/A 0.58± 0.08

*N/A: Covdec is not available since we do not run symbolic execution to compute the
output universe in these systems. For these systems, we approximate Covstr as

discussed in Section 7.5.1.

Spelling Errors

System Covstr Stmt Cov Covdec Branch Cov

AB 0.56± 0.15 0.03± 0.12 0.56± 0.15 0.00± 0.11
SM 0.41± 0.17 0.09± 0.13 0.19± 0.14 0.05± 0.12
TC 0.48± 0.08 0.52± 0.08 0.33± 0.10 0.49± 0.08
UPB 0.52± 0.10 0.24± 0.18 0.25± 0.13 0.20± 0.18
WC 0.93± 0.07 0.39± 0.16 0.56± 0.17 0.12± 0.12
OC 0.78± 0.17 0.77± 0.27 N/A 0.75± 0.26
WP 0.85± 0.07 0.44± 0.09 N/A 0.32± 0.11

since Covstr better measures “the amount of output” that is covered by a test suite. This

suggests a test selection strategy which optimizes a test suite based on Covstr.

(RQ2) As shown in the second column, Covstr does not strongly correlate with state-

ment coverage. This implies that output coverage and code coverage can be used for

different purposes, and classic code coverage metrics might not be suitable for measuring

coverage relating to the output. (RQ3) In particular, Table 7.14 indicates that while

code coverage metrics also have some correlation with output-related bug coverage, their

www.manaraa.com

117

Table 7.15 Correlations between output coverage and code coverage with code-related
bug coverage for random test suites (similar to Table 7.14 but for PHP
errors)

PHP Errors

System Covstr Stmt Cov Covdec Branch Cov

AB 0.45± 0.13 0.58± 0.13 0.43± 0.14 0.52± 0.14
SM 0.48± 0.28 0.72± 0.15 0.58± 0.21 0.80± 0.12
TC N/A
UPB 0.13± 0.09 0.27± 0.11 0.21± 0.13 0.28± 0.11
WC 0.48± 0.26 0.40± 0.14 0.37± 0.27 0.22± 0.14
OC N/A
WP N/A

*N/A: There are no PHP errors reported.

Figure 7.5 Comparison of Covstr and statement coverage for the first experiment in
SchoolMate. (Note that for the largest test suites, the correlation is 0 since
there is only one largest test suite.)

www.manaraa.com

118

correlations are generally not as strong as the correlations between output coverage and

output-related bug coverage. (RQ4) On the other hand, code coverage metrics have

better correlations with code-related bug coverage (Table 7.15). Figure 7.5 depicts this

trend for the SchoolMate system.

7.5.3 Results with Optimized Test Suites

Table 7.16 Comparison between test suites optimized for output coverage (To) and
those optimized for code coverage (Tc). Given a type of coverage, a value
in the table equals (W − L), where W is the number of times that To has
larger coverage than Tc and L is the number of times that To has smaller
coverage than Tc.

Types of Bug Coverage Output/Code Cov

System Validation Spelling PHP Covstr Stmt Cov

AB 8 11 -6 16 -31
SM 10 18 -50 46 -64
TC 42 43 N/A 52 -52
UPB -4 14 -13 56 -66
WC 15 21 -28 23 -51
OC 31 1 N/A 15 -65
WP -3 42 N/A 48 -62

*N/A: There are no PHP errors reported.

The results from Table 7.16 show that, across all systems, test suites that are opti-

mized for output coverage tend to detect more output-related bugs than those that are

optimized for code coverage. (The absolute values of the numbers in the table are less

than the size of the test pool because when test suites are sufficiently large, all bugs are

found, and in such cases test suites optimized towards different criteria all achieve the

same coverage). On the other hand, test suites optimized for code coverage detect more

PHP errors. These results are consistent with the observations for RQ3 and RQ4 in the

previous experiment. We show this trend for the AddressBook system in Figure 7.6.

www.manaraa.com

119

Figure 7.6 Comparison of Covstr and statement coverage for the second experiment in
AddressBook

To further see the effects of measuring output coverage as opposed to code coverage,

we also compare the coverage of the existing optimized test suites with regard to their

own coverage criteria (the last two columns in Table 7.16). (This corresponds to the

potential of each type of coverage for detecting bugs, assuming an equal distribution

of bugs on the output or code.) The results show that there are significant differences

between output coverage and code coverage, which is again consistent with the results

for RQ2 in the previous experiment.

Investigating the cases where output coverage performs better than code coverage in

detecting output-related bugs, we found that many systems contain large pieces of code

for purposes such as user credentials validation, numerical computations, or filesystem

operations, which—when executed—do not contribute significantly to the output. In

www.manaraa.com

120

such cases, a high coverage on code does not always translate into a high coverage on

the output, and hence, a high coverage of output-related bugs.

7.5.4 Discussion

Our goal is to provide coverage metrics that are complementary to code coverage.

The results from the previous experiments indicate that output coverage has equal or

better performance than classic code coverage in terms of detecting output-related bugs.

With regard to complexity, the initial symbolic execution ran within seconds for each

of the first five systems, and our output coverage computation completed for less than

a second per test case. While our symbolic-execution engine has limited support for

object-oriented code (Section 3), issues with larger systems (e.g., WordPress) and object-

oriented code are engineering issues in supporting more language constructs, which do

not affect our concepts. We currently do not handle JS and client-side processing as it

is out of this paper’s scope.

www.manaraa.com

121

CHAPTER 8. CONCLUSION

With the goal of improving software quality and reliability, various methods have been

introduced to aid developers in writing and maintaining software. Despite their increased

popularity in supporting traditional software applications, those methods face a number

of challenges when being applied to multilingual, dynamic web applications. Specifically,

in a web application, the client-side code (in HTML, JS, and CSS) is routinely intermixed

with the server-side code, embedded in scattered and incomplete string fragments, and

there exist a potentially exponential number of client code variants, similar to a family

C programs with #ifdefs. Due to these challenges, there is limited program analysis and

IDE support for dynamic web applications in comparison to traditional applications.

We tackled those challenges by designing a two-phase approach using two key ideas.

In the first phase, we transform a program with mixed server-side code and client-side

code into one that contains only client-side code, and captures its variants via a repre-

sentation resembling C code with #ifdefs. In the second phase, we reuse and adapt the

state-of-the-art approaches in the analysis for programs written C code with #ifdefs to

apply for the analysis on client-side code variants written in HTML, JS, and CSS.

Based on those key ideas, we introduced an infrastructure for cross-language program

analysis for dynamic web applications. Specifically, we have developed the following

research components. (The first component corresponds to the first phase, whereas the

other components correspond to the second phase.)

• An output-oriented symbolic execution engine that approximates all possible out-

puts of a PHP-based web application [105, 102]. The result of symbolic execution

www.manaraa.com

122

is the generated client-side code which possibly contains symbolic values and con-

ditional values, represented by a D-Model [105].

• A set of variability-aware parsers for conditional HTML, JS, and CSS code, which

are able to parse conditional symbolic output into a VarDOM that compactly

represents all DOM variations [101].

• Basic cross-language analyses : Based on the VarDOM, we develop concepts, tech-

niques, and tools (1) to build call graphs for embedded client code in different

languages [101, 103], (2) to compute cross-language program slices [102], and (3)

to support testing dynamic web applications via a novel test coverage criterion

called output coverage.

• A number of software development services for dynamic web applications : We de-

veloped various tools and Eclipse plug-ins to support syntax highlighting, code

completion, and code navigation for embedded code [101, 103], refactoring on em-

bedded entities [106], cross-language program slicing [102], detecting dangling ref-

erences [104, 107], detecting HTML validation errors [105], and visualizing output

coverage for testing.

In summary, this thesis has made the following contributions:

1. Concepts: (1) the new concept of embedded client code in web code, (2) the

notion of call graph for embedded client code, (3) the notion of program slices

across different languages, and (4) the notion of different types of testers concerning

different aspects of the software including its output, as well as a family of output

coverage metrics of a test suite

2. Representations: The D-Model representation encoding different possible textual

contents of the output and the VarDOM representation which compactly represents

DOM variations generated from the server-side code

www.manaraa.com

123

3. Algorithms: A systematic approach combining symbolic execution, variability-

aware parsing, and variability-aware analysis (1) to build call graphs for embedded

HTML, CSS, and JS code, (2) to compute cross-language data-flow relations and

program slices, and (3) to compute output coverage metrics

4. Tooling: A toolchain that provides various kinds of software development sup-

port for dynamic web applications including IDE services, fault localization, bug

detection, and testing

5. Empirical studies: Empirical evaluations on several real-world web applications

to investigate the complexity of call graphs, data flows, program slices, the accuracy

of bug detection, and the effectiveness of output coverage metrics, showing the

analyses’ accuracy, efficiency, and usefulness

Overall, the take-home message is that the cross-language program analysis infras-

tructure developed in this dissertation has made possible a wide range of web develop-

ment services. Apart from the core analyses and services mentioned above, our frame-

work is also designed to be extensible and adaptable. Web developers can not only make

use of our existing tools but can also extend the framework to create new ones. For

example, future work can make use of this framework to explore other important areas

in web application development such as web security. In addition, one can apply similar

techniques proposed in this thesis to other types of software applications with the same

code-generation mechanism such as build code.

www.manaraa.com

124

BIBLIOGRAPHY

[1] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund. On the accuracy of spectrum-
based fault localization. In Proceedings of the Testing: Academic and Industrial
Conference Practice and Research Techniques - MUTATION, pages 89–98. IEEE
Computer Society, 2007.

[2] H. Agrawal and J. Horgan. Dynamic program slicing. ACM SIGLAN Notices,
25:246–256, 1990.

[3] H. Agrawal, J. R. Horgan, S. London, and W. E. Wong. Fault localization using
execution slices and dataflow tests. In Proceedings of ISSRE 1995, 1995.

[4] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege. A systematic
review of the application and empirical investigation of search-based test case gen-
eration. IEEE Trans. Softw. Eng., 36(6):742–762, Nov. 2010.

[5] M. Alkhalaf, T. Bultan, and J. L. Gallegos. Verifying client-side input validation
functions using string analysis. In Proceedings of the 34th International Conference
on Software Engineering, ICSE ’12, pages 947–957. IEEE Press, 2012.

[6] M. Alkhalaf, S. R. Choudhary, M. Fazzini, T. Bultan, A. Orso, and C. Kruegel.
Viewpoints: differential string analysis for discovering client- and server-side input
validation inconsistencies. In International Symposium on Software Testing and
Analysis, ISSTA 2012, Minneapolis, MN, USA, July 15-20, 2012, pages 56–66,
2012.

[7] N. Alshahwan and M. Harman. Automated web application testing using search
based software engineering. In Proceedings of the 2011 26th IEEE/ACM Inter-
national Conference on Automated Software Engineering, ASE ’11, pages 3–12,
Washington, DC, USA, 2011. IEEE Computer Society.

[8] N. Alshahwan and M. Harman. Augmenting test suites effectiveness by increasing
output diversity. In Proceedings of the 34th International Conference on Software
Engineering, ICSE ’12, pages 1345–1348. IEEE Press, 2012.

[9] N. Alshahwan and M. Harman. Coverage and fault detection of the output-
uniqueness test selection criteria. In Proceedings of the 2014 International Sym-
posium on Software Testing and Analysis, pages 181–192, New York, NY, USA,
2014. ACM.

www.manaraa.com

125

[10] P. Ammann and J. Offutt. Introduction to Software Testing. Cambridge University
Press, New York, NY, USA, 1 edition, 2008.

[11] A. A. Andrews, J. Offutt, and R. T. Alexander. Testing web applications by
modeling with fsms. Software and Systems Modeling, 4:326–345, 2005.

[12] S. Apel, D. Batory, C. Kästner, and G. Saake. Feature-Oriented Software Product
Lines: Concepts and Implementation. Springer-Verlag, 2013.

[13] S. Apel, A. von Rhein, P. Wendler, A. Größlinger, and D. Beyer. Strategies for
product-line verification: Case studies and experiments. In Proc. Int’l Conf. Soft-
ware Engineering (ICSE), pages 482–491. IEEE Computer Society, 2013.

[14] S. Apps. Defining static web apps. https://staticapps.org/articles/
defining-static-web-apps/, 2016. Accessed: 2016-03-07.

[15] S. Artzi, J. Dolby, S. H. Jensen, A. Møller, and F. Tip. A framework for automated
testing of javascript web applications. In Proceedings of the 33rd International
Conference on Software Engineering, ICSE ’11, pages 571–580. ACM, 2011.

[16] S. Artzi, J. Dolby, F. Tip, and M. Pistoia. Practical fault localization for dynamic
web applications. In Proc. Int’l Conf. Software Engineering (ICSE), pages 265–274.
ACM Press, 2010.

[17] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar, and M. D. Ernst.
Finding bugs in dynamic web applications. In Proceedings of the 2008 international
symposium on Software testing and analysis, ISSTA ’08, pages 261–272. ACM,
2008.

[18] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar, and M. D. Ernst.
Finding bugs in web applications using dynamic test generation and explicit-state
model checking. IEEE Trans. Softw. Eng., 36(4):474–494, 2010.

[19] L. Aversano, M. D. Penta, and I. D. Baxter. Handling preprocessor-conditioned
declarations. In Proc. Int’l Workshop Source Code Analysis and Manipulation
(SCAM), pages 83–92. IEEE CS, 2002.

[20] I. Baxter and M. Mehlich. Preprocessor conditional removal by simple partial
evaluation. In Proc. Working Conf. Reverse Engineering (WCRE), pages 281–290.
IEEE Computer Society, 2001.

[21] J.-F. Bergeretti and B. A. Carré. Information-flow and data-flow analysis of while-
programs. ACM Trans. Program. Lang. Syst., 7(1):37–61, Jan. 1985.

[22] D. Binkley and K. Gallagher. Program slicing. Journal of Advanced Computing,
43:1–50, 1996.

https://staticapps.org/articles/defining-static-web-apps/
https://staticapps.org/articles/defining-static-web-apps/

www.manaraa.com

126

[23] D. Binkley, N. Gold, M. Harman, S. Islam, J. Krinke, and S. Yoo. ORBS: Language-
independent program slicing. In Proceedings of the 22nd ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, pages 109–120. ACM,
2014.

[24] D. Binkley and M. Harman. A survey of empirical results on program slicing.
Journal of Advanced Computing, 62:105–178, 2004.

[25] E. Bodden, T. Tolêdo, M. Ribeiro, C. Brabrand, P. Borba, and M. Mezini.
SPLLIFT : Statically analyzing software product lines in minutes instead of years.
In Proc. Conf. Programming Language Design and Implementation (PLDI), pages
355–364. ACM Press, 2013.

[26] E. Bounimova, P. Godefroid, and D. Molnar. Billions and billions of constraints:
Whitebox fuzz testing in production. In Proc. Int’l Conf. Software Engineering
(ICSE), pages 122–131. IEEE Computer Society, 2013.

[27] C. Cadar, D. Dunbar, and D. Engler. Klee: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In Proc. USENIX Conf.
Operating Systems Design and Implementation (OSDI), pages 209–224. USENIX
Association, 2008.

[28] G. Canfora, A. Cimitile, and A. D. Lucia. Conditioned program slicing. Inf. Soft.
Technology, 40(11-12):595–608, 1998.

[29] W. Choi, B. Aktemur, K. Yi, and M. Tatsuta. Static analysis of multi-staged
programs via unstaging translation. In Proc. Symp. Principles of Programming
Languages (POPL), pages 81–92. ACM Press, 2011.

[30] S. Clark, J. Cobb, G. M. Kapfhammer, J. A. Jones, and M. J. Harrold. Localizing
SQL Faults in Database Applications. In Proceedings of International Conference
on Automated Software Engineering (ASE 2011). IEEE, 2011.

[31] Crawljax. Crawljax website. http://crawljax.com/, 2015. Accessed: 2015-11-21.

[32] M. de Jonge, L. C. L. Kats, E. Visser, and E. Söderberg. Natural and flexible error
recovery for generated modular language environments. ACM Trans. Program.
Lang. Syst., 34(4):15:1–15:50, 2012.

[33] A. de Lucia, A. R. Fasolino, and M. Munro. Understanding function behaviors
through program slicing. In Proceedings of the 4th International Workshop on
Program Comprehension (WPC ’96), WPC ’96. IEEE Computer Society, 1996.

[34] G. A. Di Lucca and M. Di Penta. Integrating static and dynamic analysis to
improve the comprehension of existing web applications. In Proceedings of the
Seventh IEEE International Symposium on Web Site Evolution, WSE ’05, pages
87–94. IEEE Computer Society, 2005.

http://crawljax.com/

www.manaraa.com

127

[35] G. A. Di Lucca, A. R. Fasolino, and P. Tramontana. Reverse engineering web
applications: the ware approach. J. Softw. Maint. Evol., 16:71–101, January 2004.

[36] N. Dor, T. Lev-Ami, S. Litvak, M. Sagiv, and D. Weiss. Customization change
impact analysis for erp professionals via program slicing. In Proceedings of the
2008 international symposium on Software testing and analysis, ISSTA ’08, pages
97–108. ACM, 2008.

[37] S. Doğan, A. Betin-Can, and V. Garousi. Web application testing: A systematic
literature review. J. Syst. Softw., 91:174–201, May 2014.

[38] M. B. Dwyer and J. Hatcliff. Slicing software for model construction. In Higher-
Order and Symbolic Computation, pages 105–118, 1999.

[39] ECMA. ECMAScript language specification - ECMA-262 edition 5.1. http://
www.ecma-international.org/ecma-262/5.1/, 2015. Accessed: 2015-11-21.

[40] S. Elbaum, S. Karre, and G. Rothermel. Improving web application testing with
user session data. In Proceedings of the 25th International Conference on Software
Engineering, ICSE ’03, pages 49–59, Washington, DC, USA, 2003. IEEE Computer
Society.

[41] S. Erdweg, T. Rendel, C. Kästner, and K. Ostermann. SugarJ: Library-based syn-
tactic language extensibility. In Proc. Int’l Conf. Object-Oriented Programming,
Systems, Languages and Applications (OOPSLA), pages 391–406. ACM Press,
2011.

[42] M. Erwig and E. Walkingshaw. The choice calculus: A representation for software
variation. ACM Trans. Softw. Eng. Methodol. (TOSEM), 21(1):6:1–6:27, 2011.

[43] A. Feldthaus, T. Millstein, A. Møller, M. Schäfer, and F. Tip. Tool-supported refac-
toring for JavaScript. In Proc. Int’l Conf. Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA), pages 119–138. ACM Press, 2011.

[44] A. Feldthaus, M. Schäfer, M. Sridharan, J. Dolby, and F. Tip. Efficient construction
of approximate call graphs for JavaScript IDE services. In Proceedings of the
IEEE/ACM International Conference on Software Engineering, ICSE ’13, pages
752–761. IEEE Press, 2013.

[45] J. Field, G. Ramalingam, and F. Tip. Parametric program slicing. In Proceedings
of the 22Nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’95, pages 379–392. ACM, 1995.

[46] M. Fowler. Domain-Specific Languages. Pearson Education, 2010.

[47] L. Frantzen, M. Las Nieves Huerta, Z. G. Kiss, and T. Wallet. Web services and
formal methods. chapter On-The-Fly Model-Based Testing of Web Services with
Jambition, pages 143–157. Springer-Verlag, Berlin, Heidelberg, 2009.

http://www.ecma-international.org/ecma-262/5.1/
http://www.ecma-international.org/ecma-262/5.1/

www.manaraa.com

128

[48] K. Gallagher, D. Binkley, and M. Harman. Stop-list slicing. In Proceedings of the
Sixth IEEE International Workshop on Source Code Analysis and Manipulation,
SCAM ’06, pages 11–20. IEEE Computer Society, 2006.

[49] J. Garcia, D. Popescu, G. Safi, W. G. J. Halfond, and N. Medvidovic. Identifying
message flow in distributed event-based systems. In Proceedings of the 2013 9th
Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2013, pages
367–377. ACM, 2013.

[50] P. Gazzillo and R. Grimm. SuperC: Parsing all of C by taming the preprocessor.
In Proc. Conf. Programming Language Design and Implementation (PLDI). ACM
Press, 2012.

[51] C. Girardi, F. Ricca, and P. Tonella. Web crawlers compared. International Journal
of Web Information Systems, 2(2):85–94, 2006.

[52] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated random test-
ing. In Proc. Conf. Programming Language Design and Implementation (PLDI),
pages 213–223. ACM Press, 2005.

[53] J. B. Goodenough and S. L. Gerhart. Toward a theory of test data selection. In
Proceedings of the International Conference on Reliable Software, pages 493–510.
ACM, 1975.

[54] D. Grove and C. Chambers. A framework for call graph construction algorithms.
ACM Trans. Program. Lang. Syst., 23(6):685–746, 2001.

[55] W. G. J. Halfond and A. Orso. Amnesia: analysis and monitoring for neutral-
izing sql-injection attacks. In Proceedings of the 20th IEEE/ACM international
Conference on Automated software engineering, ASE ’05, pages 174–183. ACM,
2005.

[56] M. Harman and S. Danicic. Amorphous program slicing. In Proceedings of the 5th
International Workshop on Program Comprehension (WPC ’97), WPC ’97, pages
70–. IEEE Computer Society, 1997.

[57] M. Harman, S. Danicic, Y. Sivagurunathan, and D. Simpson. The next 700 slicing
criteria. In Proceedings of the 2nd U.K. Workshop on Program Comprehension,
1996.

[58] M. Harman and K. Gallagher. Program slicing. Inform. Softw. Technol., 40:577–
582, 1998.

[59] M. Harman and R. Hierons. An overview of program slicing. Softw. Focus, 3:85–92,
2001.

[60] M. Harman, R. Hierons, C. Fox, S. Danicic, and J. Howroyd. Pre/post condi-
tioned slicing. In Proceedings of the IEEE International Conference on Software
Maintenance (ICSM’01), ICSM ’01. IEEE Computer Society, 2001.

www.manaraa.com

129

[61] P. Heidegger and P. Thiemann. Contract-driven testing of javascript code. In
Proceedings of the 48th International Conference on Objects, Models, Components,
Patterns, TOOLS’10, pages 154–172, Berlin, Heidelberg, 2010. Springer-Verlag.

[62] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence
graphs. In Proceedings of the ACM SIGPLAN 1988 conference on Programming
Language design and Implementation, PLDI ’88, pages 35–46. ACM, 1988.

[63] S. S. Huang and Y. Smaragdakis. Morphing: Structurally shaping a class by
reflecting on others. ACM Trans. Program. Lang. Syst. (TOPLAS), 33(2):6:1–44,
2011.

[64] S. S. Huang, D. Zook, and Y. Smaragdakis. Statically safe program generation with
SafeGen. In Proc. Int’l Conf. Generative Programming and Component Engineering
(GPCE), volume 3676, pages 309–326. Springer-Verlag, 2005.

[65] P. Hudak. Modular domain specific languages and tools. In Proc. Int’l Conf.
Software Reuse (ICSR), pages 134–142. IEEE Computer Society, 1998.

[66] Humbug. Mutation testing framework for php. https://github.com/padraic/
humbug, 2016. Accessed: 2016-03-07.

[67] JavaBDD. JavaBDD website. http://javabdd.sourceforge.net/, 2015. Ac-
cessed: 2015-11-21.

[68] Jazzy. Jazzy website. http://sourceforge.net/projects/jazzy/, 2015. Ac-
cessed: 2015-11-21.

[69] D. Jeffrey, N. Gupta, and R. Gupta. Fault localization using value replacement. In
Proceedings of the 2008 international symposium on Software testing and analysis,
ISSTA ’08, pages 167–178. ACM, 2008.

[70] S. H. Jensen, M. Madsen, and A. Møller. Modeling the HTML DOM and browser
API in static analysis of JavaScript web applications. In Proc. Europ. Software En-
gineering Conf./Foundations of Software Engineering (ESEC/FSE). ACM Press,
2011.

[71] S. H. Jensen, A. Møller, and P. Thiemann. Type analysis for JavaScript. In Pro-
ceedings of the International Static Analysis Symposium (SAS). Springer-Verlag,
2009.

[72] R. Jhala and R. Majumdar. Path slicing. In Proceedings of the 2005 ACM SIG-
PLAN Conference on Programming Language Design and Implementation, PLDI
’05, pages 38–47. ACM, 2005.

[73] J. A. Jones and M. J. Harrold. Empirical evaluation of the tarantula automatic
fault-localization technique. In Proceedings of the 20th IEEE/ACM international
Conference on Automated software engineering, ASE ’05, pages 273–282. ACM,
2005.

https://github.com/padraic/humbug
https://github.com/padraic/humbug
http://javabdd.sourceforge.net/
http://sourceforge.net/projects/jazzy/

www.manaraa.com

130

[74] J. A. Jones, M. J. Harrold, and J. Stasko. Visualization of test information to
assist fault localization. In Proceedings of the 24th International Conference on
Software Engineering, ICSE ’02, pages 467–477. ACM, 2002.

[75] U. Jørring and W. L. Scherlis. Compilers and staging transformations. In Proc.
Symp. Principles of Programming Languages (POPL), pages 86–96. ACM Press,
1986.

[76] JTidy. Jtidy website. http://jtidy.sourceforge.net/, 2015. Accessed: 2015-
11-21.

[77] C. Kästner, S. Apel, T. Thüm, and G. Saake. Type checking annotation-based
product lines. ACM Trans. Softw. Eng. Methodol. (TOSEM), 21(3):14:1–14:39,
2012.

[78] C. Kästner, P. G. Giarrusso, T. Rendel, S. Erdweg, K. Ostermann, and T. Berger.
Variability-aware parsing in the presence of lexical macros and conditional compila-
tion. In Proceedings of the 2011 ACM International Conference on Object Oriented
Programming Systems Languages and Applications, OOPSLA ’11, pages 805–824.
ACM, 2011.

[79] L. C. Kats and E. Visser. The Spoofax language workbench: Rules for declar-
ative specification of languages and IDEs. In Proc. Int’l Conf. Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA), pages 444–463.
ACM Press, 2010.

[80] A. Kieyzun, P. J. Guo, K. Jayaraman, and M. D. Ernst. Automatic creation of SQL
injection and cross-site scripting attacks. In Proc. Int’l Conf. Software Engineering
(ICSE), pages 199–209. IEEE Computer Society, 2009.

[81] J. C. King. Symbolic execution and program testing. Commun. ACM, 19(7):385–
394, 1976.

[82] B. Korel and J. Laski. Dynamic program slicing. Inf. Process. Lett., 29:155–163,
October 1988.

[83] Y.-F. Li, P. K. Das, and D. L. Dowe. Two decades of web application testing-a
survey of recent advances. Inf. Syst., 43(C):20–54, July 2014.

[84] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan. Scalable statistical bug
isolation. In Proceedings of the 2005 ACM SIGPLAN conference on Programming
language design and implementation, PLDI ’05, pages 15–26. ACM, 2005.

[85] J. Liebig, A. von Rhein, C. Kästner, S. Apel, J. Dörre, and C. Lengauer.
Scalable analysis of variable software. In Proc. Europ. Software Engineering
Conf./Foundations of Software Engineering (ESEC/FSE), pages 81–91. ACM
Press, 2013.

http://jtidy.sourceforge.net/

www.manaraa.com

131

[86] S. Litvak, N. Dor, R. Bodik, N. Rinetzky, and M. Sagiv. Field-sensitive program
dependence analysis. In Proceedings of the eighteenth ACM SIGSOFT international
symposium on Foundations of software engineering, FSE ’10, pages 287–296. ACM,
2010.

[87] A. D. Lucia. Program slicing: Methods and applications. In Proceedings of the 1st
IEEE International Workshop on Source Code Analysis and Manipulation, pages
142–149. IEEE CS, 2001.

[88] J. Lyle and M. Weiser. Automatic bug location by program slicing. In Proceedings
of the ICCEA, ICCEA’87, pages 877–883, 1987.

[89] M. Madsen, B. Livshits, and M. Fanning. Practical static analysis of JavaScript
applications in the presence of frameworks and libraries. In Proc. Europ. Software
Engineering Conf./Foundations of Software Engineering (ESEC/FSE), pages 499–
509. ACM Press, 2013.

[90] S. Mahajan and W. G. Halfond. Finding html presentation failures using image
comparison techniques. In Proceedings of the 29th ACM/IEEE International Con-
ference on Automated Software Engineering, ASE ’14, pages 91–96. ACM, 2014.

[91] S. Mahajan, B. Li, and W. G. J. Halfond. Root cause analysis for html presentation
failures using search-based techniques. In Proceedings of the 7th International
Workshop on Search-Based Software Testing, SBST 2014, pages 15–18. ACM, 2014.

[92] J. Maras, J. Carlson, and I. Crnkovic. Client-side web application slicing. In 26th
IEEE/ACM International Conference on Automated Software Engineering (ASE),
pages 504–507. IEEE Press, 2011.

[93] P. McMinn. Search-based software test data generation: A survey: Research arti-
cles. Softw. Test. Verif. Reliab., 14(2):105–156, June 2004.

[94] A. Mesbah and A. van Deursen. Invariant-based automatic testing of ajax user
interfaces. In Proceedings of the 31st International Conference on Software Engi-
neering, pages 210–220, Washington, DC, USA, 2009. IEEE Computer Society.

[95] A. Mesbah, A. van Deursen, and S. Lenselink. Crawling ajax-based web applica-
tions through dynamic analysis of user interface state changes. ACM Trans. Web,
6(1):3:1–3:30, Mar. 2012.

[96] A. Milani Fard, M. Mirzaaghaei, and A. Mesbah. Leveraging existing tests in auto-
mated test generation for web applications. In Proceedings of the 29th ACM/IEEE
International Conference on Automated Software Engineering, ASE ’14, pages 67–
78, New York, NY, USA, 2014. ACM.

[97] J. C. Miller and C. J. Maloney. Systematic mistake analysis of digital computer
programs. Commun. ACM, 6(2):58–63, Feb. 1963.

www.manaraa.com

132

[98] Y. Minamide. Static approximation of dynamically generated web pages. In Pro-
ceedings of the International Conference on World Wide Web (WWW), pages 432–
441. ACM Press, 2005.

[99] M. Mirzaaghaei and A. Mesbah. Dom-based test adequacy criteria for web appli-
cations. In Proceedings of the 2014 International Symposium on Software Testing
and Analysis, ISSTA 2014, pages 71–81, New York, NY, USA, 2014. ACM.

[100] D. Nations. What is a web application? http://webtrends.about.com/od/
webapplications/a/web_application.htm, 2014. Accessed: 2016-02-09.

[101] H. V. Nguyen, C. Kästner, and T. N. Nguyen. Building call graphs for embedded
client-side code in dynamic web applications. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering, pages
518–529, New York, NY, USA, 2014. ACM.

[102] H. V. Nguyen, C. Kästner, and T. N. Nguyen. Cross-language program slicing
for dynamic web applications. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, pages 369–380, New York, NY, USA, 2015.
ACM.

[103] H. V. Nguyen, C. Kästner, and T. N. Nguyen. Varis: IDE support for embedded
client code in PHP web applications. In Proceedings of the 37th International
Conference on Software Engineering - Volume 2, pages 693–696, Piscataway, NJ,
USA, 2015. IEEE Press.

[104] H. V. Nguyen, H. A. Nguyen, T. T. Nguyen, A. T. Nguyen, and T. N. Nguyen. Dan-
gling references in multi-configuration and dynamic PHP-based web applications.
In Proceedings of the 28th IEEE/ACM International Conference on Automated
Software Engineering. IEEE CS, 2013.

[105] H. V. Nguyen, H. A. Nguyen, T. T. Nguyen, and T. N. Nguyen. Auto-locating and
fix-propagating for HTML validation errors to PHP server-side code. In Proceedings
of the 2011 26th IEEE/ACM International Conference on Automated Software
Engineering, pages 13–22, Washington, DC, USA, 2011. IEEE Computer Society.

[106] H. V. Nguyen, H. A. Nguyen, T. T. Nguyen, and T. N. Nguyen. BabelRef: De-
tection and renaming tool for cross-language program entities in dynamic web
applications. In Proceedings of the 34th International Conference on Software En-
gineering, pages 1391–1394, Piscataway, NJ, USA, 2012. IEEE Press.

[107] H. V. Nguyen, H. A. Nguyen, T. T. Nguyen, and T. N. Nguyen. DRC: A detec-
tion tool for dangling references in PHP-based web applications. In Proceedings
of the 2013 International Conference on Software Engineering, pages 1299–1302,
Piscataway, NJ, USA, 2013. IEEE Press.

[108] F. Nielson and H. R. Nielson. Two-level Functional Languages. Cambridge Uni-
versity Press, 1992.

http://webtrends.about.com/od/webapplications/a/web_application.htm
http://webtrends.about.com/od/webapplications/a/web_application.htm

www.manaraa.com

133

[109] A. Nishimatsu, M. Jihira, S. Kusumoto, and K. Inoue. Call-mark slicing: An effi-
cient and economical way of reducing slice. In Proceedings of the 21st International
Conference on Software Engineering, ICSE ’99, pages 422–431. ACM, 1999.

[110] N. I. of Standards and Technology. The economic impacts of inadequate infrastruc-
ture for software testing. http://www.nist.gov/director/planning/upload/
report02-3.pdf, 2002. Accessed: 2015-11-21.

[111] A. Orso, S. Sinha, and M. Harrold. Incremental slicing based on data-dependence
types. In In Proceedings of the IEEE International Conference on Software Main-
tenance (ICSM’01), pages 158–167. IEEE CS, 2001.

[112] T. J. Ostrand and M. J. Balcer. The category-partition method for specifying and
generating fuctional tests. Commun. ACM, 31(6):676–686, June 1988.

[113] K. J. Ottenstein and L. M. Ottenstein. The program dependence graph in a soft-
ware development environment. SIGPLAN Not., 19(5):177–184, Apr. 1984.

[114] Y. Padioleau. Parsing C/C++ code without pre-processing. In Proc. Int’l Conf.
Compiler Construction (CC), pages 109–125. Springer-Verlag, 2009.

[115] H. Pan and E. H. Spafford. Heuristics for automatic localization of software faults.
Technical report, 1992.

[116] H. Post and C. Sinz. Configuration lifting: Verification meets software configura-
tion. In Proc. Int’l Conf. Automated Software Engineering (ASE), pages 347–350.
IEEE Computer Society, 2008.

[117] U. Praphamontripong and J. Offutt. Applying mutation testing to web applica-
tions. In Proceedings of the 2010 Third International Conference on Software Test-
ing, Verification, and Validation Workshops, ICSTW ’10, pages 132–141, Wash-
ington, DC, USA, 2010. IEEE Computer Society.

[118] Quercus. Quercus website. http://quercus.caucho.com/, 2015. Accessed: 2015-
11-21.

[119] S. Raghavan and H. Garcia-Molina. Crawling the hidden web. In Proceedings of
the 27th International Conference on Very Large Data Bases, VLDB ’01, pages
129–138, San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc.

[120] T. Reps, T. Ball, M. Das, and J. Larus. The use of program profiling for software
maintenance with applications to the year 2000 problem. In Proceedings of the 6th
European Software Engineering Conference held jointly with the 5th ACM SIG-
SOFT International Symposium on Foundations of Software Engineering, ESEC
’97/FSE-5, pages 432–449. Springer-Verlag New York, Inc., 1997.

[121] F. Ricca and P. Tonella. Analysis and testing of web applications. In Proceedings
of the 23rd International Conference on Software Engineering, ICSE ’01, pages
25–34, Washington, DC, USA, 2001. IEEE Computer Society.

http://www.nist.gov/director/planning/upload/report02-3.pdf
http://www.nist.gov/director/planning/upload/report02-3.pdf
http://quercus.caucho.com/

www.manaraa.com

134

[122] F. Ricca and P. Tonella. Web application slicing. In Proceedings of the IEEE In-
ternational Conference on Software Maintenance, pages 148–157. IEEE Computer
Society, 2001.

[123] F. Ricca and P. Tonella. Construction of the system dependence graph for web
application slicing. In Proceedings of the Second IEEE International Workshop on
Source Code Analysis and Manipulation, pages 123–132. IEEE Press, 2002.

[124] D. J. Richardson and L. A. Clarke. A partition analysis method to increase pro-
gram reliability. In Proceedings of the 5th International Conference on Software
Engineering, ICSE ’81, pages 244–253, Piscataway, NJ, USA, 1981. IEEE Press.

[125] H. Samimi, M. Schäfer, S. Artzi, T. Millstein, F. Tip, and L. Hendren. Automated
repair of HTML generation errors in PHP applications using string constraint solv-
ing. In Proceedings of International Conference on Software Engineering, pages
277–287. IEEE Press, 2012.

[126] R. Santelices, J. A. Jones, Y. Yanbing, and M. J. Harrold. Lightweight fault-
localization using multiple coverage types. In Proceedings of the 31st International
Conference on Software Engineering, ICSE ’09, pages 56–66. IEEE Computer So-
ciety, 2009.

[127] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song. A symbolic
execution framework for javascript. In Proceedings of the 2010 IEEE Symposium
on Security and Privacy, pages 513–528, Washington, DC, USA, 2010. IEEE Com-
puter Society.

[128] M. Schur, A. Roth, and A. Zeller. Mining behavior models from enterprise web
applications. In Joint Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of Software Engineering,
ESEC/FSE’13, Saint Petersburg, Russian Federation, August 18-26, 2013, pages
422–432. ACM, 2013.

[129] K. Sen, S. Kalasapur, T. Brutch, and S. Gibbs. Jalangi: A selective record-replay
and dynamic analysis framework for JavaScript. In Proc. Europ. Software Engi-
neering Conf./Foundations of Software Engineering (ESEC/FSE), pages 488–498.
ACM Press, 2013.

[130] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing engine for C.
In Proc. Europ. Software Engineering Conf./Foundations of Software Engineering
(ESEC/FSE), pages 263–272. ACM Press, 2005.

[131] J. Silva. A vocabulary of program slicing-based techniques. ACM Comput. Surv.,
44(3):12:1–12:41, June 2012.

[132] M. Sridharan, S. J. Fink, and R. Bodik. Thin slicing. In Proceedings of the 2007
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, pages 112–122. ACM, 2007.

www.manaraa.com

135

[133] I. L. Stats. Internet live stats website. http://www.internetlivestats.com/,
2016. Accessed: 2016-02-18.

[134] W. Taha and T. Sheard. Multi-stage programming with explicit annotations. In
Proc. Workshop on Partial Evaluation and Semantics-Based Program Manipulation
(PEPM), pages 203–217. ACM Press, 1997.

[135] T. Thüm, S. Apel, C. Kästner, I. Schaefer, and G. Saake. A classification and
survey of analysis strategies for software product lines. ACM Computing Surveys,
47(1):6:1–6:45, June 2014.

[136] T. Thüm, I. Schaefer, S. Apel, and M. Hentschel. Family-based deductive verifica-
tion of software product lines. In Proc. Int’l Conf. Generative Programming and
Component Engineering (GPCE), pages 11–20. ACM Press, 2012.

[137] Tidy. Tidy website. http://tidy.sourceforge.net/, 2015. Accessed: 2015-11-
21.

[138] F. Tip. A survey of program slicing techniques. Technical report, Amsterdam, The
Netherlands, 1994.

[139] F. Tip. A survey of program slicing techniques. Journal of Programming Languages,
3:121–189, 1995.

[140] P. Tonella and F. Ricca. Web application slicing in presence of dynamic code
generation. Journal of Automated Software Engineering, 12(2):259–288, 2005.

[141] W3C. CSS selectors. http://www.w3.org/TR/CSS21/selector.html, 2015. Ac-
cessed: 2015-11-21.

[142] WALA. WALA tools in JavaScript. http://wala.sourceforge.net/wiki/
index.php/Main_Page#WALA_Tools_in_JavaScript, 2015. Accessed: 2015-11-21.

[143] X. Wang, L. Zhang, T. Xie, H. Mei, and J. Sun. Locating need-to-translate constant
strings in web applications. In Proc. Int’l Symposium Foundations of Software
Engineering (FSE), pages 87–96. ACM Press, 2010.

[144] G. Wassermann and Z. Su. Sound and precise analysis of web applications for
injection vulnerabilities. In Proceedings of the 2007 ACM SIGPLAN conference on
Programming language design and implementation, PLDI ’07, pages 32–41. ACM,
2007.

[145] G. Wassermann and Z. Su. Static detection of cross-site scripting vulnerabilities. In
Proceedings of the 30th International Conference on Software Engineering, pages
171–180, New York, NY, USA, 2008. ACM.

[146] G. Wassermann, D. Yu, A. Chander, D. Dhurjati, H. Inamura, and Z. Su. Dynamic
test input generation for web applications. In Proceedings of the 2008 International
Symposium on Software Testing and Analysis, ISSTA ’08, pages 249–260, New
York, NY, USA, 2008. ACM.

http://www.internetlivestats.com/
http://tidy.sourceforge.net/
http://www.w3.org/TR/CSS21/selector.html
http://wala.sourceforge.net/wiki/index.php/Main_Page#WALA_Tools_in_JavaScript
http://wala.sourceforge.net/wiki/index.php/Main_Page#WALA_Tools_in_JavaScript

www.manaraa.com

136

[147] M. Weiser. Program slicing. IEEE Trans. Softw. Engineering, 10(4):352–357, Oct.
1984.

[148] E. J. Weyuker and T. J. Ostrand. Theories of program testing and the application
of revealing subdomains. IEEE Trans. Softw. Eng., 6(3):236–246, May 1980.

[149] Wikipedia. Client-server model. https://en.wikipedia.org/wiki/Client%E2%
80%93server_model, 2016. Accessed: 2016-03-07.

[150] Wikipedia. Symbolic execution. https://en.wikipedia.org/wiki/Symbolic_
execution, 2016. Accessed: 2016-03-07.

[151] Y. Xie and A. Aiken. Static detection of security vulnerabilities in scripting lan-
guages. In Proceedings of the 15th Conference on USENIX Security Symposium -
Volume 15, Berkeley, CA, USA, 2006. USENIX Association.

[152] J. Xu, Y. Gao, S. Christley, and G. Madey. A topological analysis of the open souce
software development community. In HICSS ’05: Proceedings of the Proceedings of
the 38th Annual Hawaii International Conference on System Sciences (HICSS’05)
- Track 7, page 198.1. IEEE Computer Society, 2005.

[153] F. Yu, M. Alkhalaf, and T. Bultan. Patching vulnerabilities with sanitization
synthesis. In Proceedings of the 33rd International Conference on Software Engi-
neering, pages 251–260, New York, NY, USA, 2011. ACM.

[154] X. Zhang, N. Gupta, and R. Gupta. Locating faults through automated predi-
cate switching. In Proceedings of the 28th international conference on Software
engineering, ICSE ’06, pages 272–281. ACM, 2006.

[155] Y. Zou, Z. Chen, Y. Zheng, X. Zhang, and Z. Gao. Virtual dom coverage for
effective testing of dynamic web applications. In Proceedings of the 2014 Inter-
national Symposium on Software Testing and Analysis, ISSTA 2014, pages 60–70,
New York, NY, USA, 2014. ACM.

https://en.wikipedia.org/wiki/Client%E2%80%93server_model
https://en.wikipedia.org/wiki/Client%E2%80%93server_model
https://en.wikipedia.org/wiki/Symbolic_execution
https://en.wikipedia.org/wiki/Symbolic_execution

	2016
	Cross-language program analysis for dynamic web applications
	Hung Viet Nguyen
	Recommended Citation

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGMENTS
	ABSTRACT
	1. OVERVIEW
	1.1 Software Development Support for Web Applications
	1.2 Challenges in Analyzing Dynamic Web Applications
	1.3 Key Ideas of Our Approach
	1.4 Contributions and Outline of This Thesis

	2. REVIEW OF LITERATURE
	2.1 Web Application Analysis
	2.1.1 Analyzing the Output of a Web Application
	2.1.2 Web Application Security
	2.1.3 Bug Detection for Web Applications
	2.1.4 Fault Localization for Web Applications
	2.1.5 IDE Services for Web Application Development
	2.1.6 Call Graph in Web Applications
	2.1.7 Web Application Slicing
	2.1.8 Web Application Testing

	2.2 Related Techniques
	2.2.1 Web Engineering
	2.2.2 String Analysis
	2.2.3 Symbolic Execution
	2.2.4 Variability-Aware Parsing and Analysis

	3. OUTPUT-ORIENTED SYMBOLIC EXECUTION
	3.1 D-Model: Representation of Outputs
	3.2 Symbolic Execution to Approximate Outputs
	3.2.1 Key Ideas
	3.2.2 Evaluation Rules

	4. PARSING CONDITIONAL SYMBOLIC OUTPUT
	4.1 VarDOM: Representation for Conditional DOM
	4.2 Variability-Aware Parsing to Construct VarDOM

	5. FOUNDATION FOR CROSS-LANGUAGE PROGRAM ANALYSIS TECHNIQUES
	5.1 Building Call Graphs for Embedded Client Code
	5.1.1 Supporting HTML Jumps
	5.1.2 Supporting CSS Jumps
	5.1.3 Conditional JS Call Graph

	5.2 Cross-language Program Slicing
	5.2.1 Concepts
	5.2.2 Approach Overview
	5.2.3 Data-Flow Analysis via Symbolic Execution
	5.2.4 Embedded Code Analysis
	5.2.5 Cross-language Data Flows

	5.3 Output-Oriented Testing
	5.3.1 Motivation
	5.3.2 Output Coverage Metrics
	5.3.3 Computing Output Coverage

	6. DEVELOPING DYNAMIC WEB DEVELOPMENT SUPPORT AND IDE SERVICES
	6.1 IDE Services for Embedded Client Code
	6.1.1 The VarDOM View
	6.1.2 Syntax Highlighting
	6.1.3 Code Completion
	6.1.4 Jump to Declaration
	6.1.5 Refactoring

	6.2 Fault Localization via Cross-language Program Slicing
	6.3 Bug Detection
	6.3.1 Dangling Reference Detection
	6.3.2 HTML Validation Error Detection

	6.4 Output Coverage Visualization for Output-Oriented Testing

	7. EMPIRICAL EVALUATION
	7.1 Evaluation of Call Graphs for Embedded Client Code
	7.1.1 Experiment Setup
	7.1.2 Practicality and Accuracy of Call Graphs
	7.1.3 Complexity of Call Graphs

	7.2 Empirical Study on Cross-language Program Slicing
	7.2.1 Experiment Setup
	7.2.2 Complexity of Data-Flow Graphs
	7.2.3 Complexity of Program Slices
	7.2.4 Discussion

	7.3 Evaluation of Dangling Reference Detection
	7.3.1 Experiment Setup
	7.3.2 Accuracy of Dangling Reference Detection
	7.3.3 Case Studies

	7.4 Evaluation of HTML Validation Error Detection
	7.4.1 Experiment Setup
	7.4.2 Accuracy of Client Code and Server Code Mapping
	7.4.3 Accuracy of Fix Propagation from Client Code to Server Code

	7.5 Empirical Study on Output-Oriented Testing
	7.5.1 Experiment Setup
	7.5.2 Results with Random Test Suites
	7.5.3 Results with Optimized Test Suites
	7.5.4 Discussion

	8. CONCLUSION
	BIBLIOGRAPHY

